
t.

4

TRS-80® Pascal

I(
A DIVISION OF TANDY CORPORATION

FORT WORTH, TEXAS 76102

INTRODUCTION

Congratulations on the purchase of your model 4 TRS-80
Pascal programming system. TRS-80 Pascal is a powerful
language system that will increase your productivity as a
programmer.

The TRS-80 Pascal system is excellent for educational
instruction because it is a complete implementation of the
language as defined by its creator, Niklaus Wirth. In
addition, some very important language extensions have
been included to make it ideal as a professional program
development system.

Included with the TRS-80 Pascal System is a very powerful,
programmable full screen text editor. The editor
characteristics may be easily changed to suit your personal
preferences. You can map editor commands to the model 4
keyboard as desired and you can define your cwn editor
commands.

The TRS-80 Pascal compiler generates a very efficient
and compact object code. Programs developed with TRS-80
Pascal will typically execute between 10 and 50 times faster
than equivalent programs developed with interpreted BASIC.
The compact size of the object code allows you to develop
very large programs without the need to resort to overlays
or chaining.

IMPORTANT NOTE FOR
MODEL 4 TRS-80 PASCAL USERS

(Catalog Number 26-2212)

It is important to note that when using TRS-80
Pascal with the Model 4, the minimum system
requirements are as follows:

64K Random Access Memory
Two Disk Drives
TRSDOS Version 6 Operating System

A printer capable of printing at least 80
columns per line and connecting cable are
also recommended.

When using TRS-80 Pascal, a disk containing
the TRSDOS Version 6 operating system must be in
drive O. None of the Model 4 TRS-80 Pascal disks
contain an operating system. The TRSDOS Version 6
operating system must be supplied by the user.

J

)

(

INFORMATION FOR FIRST TIME USERS

If you are using this manual for the first time and would
like to try writing a program in Pascal right away, then we
suggest that after reading the Beginners Guide you go right
to the Tutorial (section 4).

The Beginners Guide (pages 6 and 7) gives instructions for
using the SAMPLE/EDT file on your disk. The SAMPLE/EDT file
contains simple edit/key functions. When this file is
renamed to SETUP/EDT, the editor will recognize the Model 4
arrow keys as commands that move the cursor around on the
screen. Some of the other keys used to execute commands are
also different from those described in the Editor Manual.
Before renaming this file, be sure to make a backup of the
disk labeled SYSTEMl which is described on page 4 of the
Beginners Guide. Label the backup so that you can
distinguish it from the SYSTEMl disk.

The editor is used for creating your Pascal programs. A few
necessary edit commands will aid you in creating your first
program.

1. From TRSDOS Ready, type edit and press <ENTER>.

2. While holding down the CLEAR key, press the N key
repeatedly to insert blank lines into the editor's
text buffer.

3. You save your program by pressing the Fl key and then
at the<> prompt, type EXIT. The response to the
prompt <EXIT>FILE: is the name you choose plus the
extension /PCL and the drive number in the form :d.

Example: DATABASE/PCL:l

The response to the prompt <EXIT>BACKUP? is <ENTER>.

The editor has many more commands in addition to the ones
described in the Beginners Guide. The Editor Manual
describes the complete set of editor commands. The editor
also has a command called HELP. This command is executed by
pressing the Fl key and at the<> prompt typing HELP. At
the <HELP>SUBJECT prompt, type one of the following:

HELP KEY CMD

The HELP subject displays information about the other two
subjects, KEY and CMD. The KEY subject displays the
keyboard layout of editor commands. The CMD subject
displays the complete list of editor commands in alphabetic
order. Each command has a two character mnemonic that may
be used to execute the command. Simply press the Fl key
and at the<> prompt, type the two character mnemonic.

(

NOTICE TO PROGRAMMERS

By purchase of the software product described in
this manual, you have obtained a license to
duplicate the supplied disk files only as
necessary for personal use on your Model 4 computer.
None of the supplied files may be reproduced for
resale.

If you intend to sell application programs
developed using TRS-80 Pascal, you must follow
the procedure below to avoid violation of this
license and of copyright laws.

1. Use the PASCAL compiler to translate the
the application program to object code.

2. Use the LINKLOAD utility to link the object code
with the TRS-80 Pascal runtime support and
build a stand alone, executable command file
C/CMD extension).

3. The executable command file may be copied and
sold with no royalty payments required. However,
all programs sold must document the fact that they
contain TRS-80 PASCAL RUNTIME SUPPORT.

HOW TRS-80 PASCAL WORKS

TRS-80 Pascal is a compiled language. This means that
programs must first be translated to object format before
they may be executed.

The first step in developing a program is to enter the
program into the computer and save it to a disk file. A
full screen text editor (EDIT/CMD) is supplied to allow you
to create your programs.

The second step is to compile the program. There are two
versions of the compiler which are supplied for translating
your programs to object format. One version is
non-overlayed (PASCAL/CMD) while the other is overlayed
(PASCALB/CMD). You should use the non-overlayed compiler
most of the time because it is faster. However, when
compiling very large programs, it may be necessary to use
the overlayed compiler.

The third step is to execute the program. There is a run
utility (RUNP/CMD) supplied which will execute your compiled
programs. The run utility loads and executes object format
files created by the compiler.

The linking loader utility (LINKLOAD/CMD) must be used to
execute programs which have been split into separately
compiled segments. The linking loader loads one or more
object format files and links them into a single executable
program. It has the ability to execute the program directly
or to build an executable command file.

Optional optimizations may be performed to decrease the
size of a compiled program or to increase its execution
speed. The optimize utility (OPTIMIZE/CMD) reduces the
the size of an object format file by 10 to 30 percent.
The codegen utility (CODEGEN/CMD) translates an object format
file into machine instructions which increases execution
speed 3 to 5 times.

(

AN OVERVIEW OF THE TRS-80
PASCAL MANUAL

There are seven sections to this manual. We suggest
that you read through the Beginners Guide carefully. The seven
sections are:

1/ BEGINNERS GUIDE
(1) Takes you through the steps of backing up the system.
(2) Leads you through the steps of entering and executing a

a simple Pascal program.
(3) Introductory trouble shooting guide.

2/ EDITOR MANUAL
Shows how to use the Blaise II text editor in detail.

3/ SYSTEM IMPLEMENTATION MANUAL
Gives specific information on the TRS-80 Model 4
implementation of Pascal.

Included is more detailed information on:

Cl) Compiling and executing programs.
(2) TRS-80 Pascal memory usage.
(3) Using the external library of procedures and functions.

(Graphics, keyboard and system call interfaces)
(4) Using the external library of dynamic string functions.
(5) Using the Random File access routines.
(6) Interfacing machine language programs to Pascal.
(7) Miscellaneous patches to modify TRS-80 Pascal.

4/ TUTORIAL
A step by step introduction to Pascal aimed at people
with some knowledge of a computer language.

5/ LANGUAGE REFERENCE MANUAL
A detailed guide to the TRS-80 Pascal language.

6/ ADVANCED DEVELOPMENT PACKAGE
Contains sections on the use and execution of the Native
Code-generator and Optimizer programs. Explains when and
why to use these utilities.

7/ MASTER CROSS REFERENCE INDEX
A cross reference index for the entire documentation package.

The TRS-80 Pascal system includes the following
files:

Disk 1 of 2

PASCAL/CMD
ERRORS/DAT
RUNP/CMD
TRSLIB/PCL
STRINGS/PCL
DATABASE/PCL
EDIT/CMD
HELP/HLP
CMD/HLP
KEY/HLP
SETEDIT/CMD
SETUP/EDT
SAMPLE/EDT
SYSTEMl/JCL
SYSTEM2/JCL

Disk 2 of 2

PASCALB/CMD
PASCAL/OVl
PASCAL/OV2
PASCAL/OV3
PASCAL/OV4
ERRORS/DAT
LINKLOAD/CMD
TRSLIB/OBJ
STRINGS/OBJ
RANDOM/OBJ
CODEGEN/CMD
CODEINIT/DAT
OPTIMIZE/CMD
SYSTEM3/JCL
SYSTEM4/JCL

Non-overlayed compiler
Error message file used by the compiler
Fast load and run utility
External declarations for TRS-80 library
External declarations for STRING library
Tutorial database program in source form
Text editor
Editor help file
Editor help file
Editor help file
Editor setup file utility
Editor binary setup file
Sample binary setup file (maps arrow keys)
Configures a minimum system disk #1
Configures a minimum system disk #2

Overlayed compiler
Overlay file for PASCALB
Overlay file for PASCALB
Overlay file for PASCALB
Overlay file for PASCALB
Error message file used by the compiler
Linking loader utility
Object for TRS-80 runtime library
Object for string library
Object for Random file procedures
Native code generator
Data file for CODEGEN/CMD
P-code Optimizer
Configures a minimum system disk #3
Configures a minimum system disk #4

1) Making Backups

2) File Configuration

BEGINNERS GUIDE

Table of Contents

.

.
3)

4)

5)

Overall System View

2

3

5

6 Using the Editor ••

Entering a Simple Program. .12

6) Compiling the Program •••••••••••••••••••.•••••••••••••••.• 13

7) Running the Program •••••••••••••••.•••••••••••.••••••••••• 15

8) Trouble Shooting Guide. .17

9) Common Error Messages ••••••••••••••••••••••••••••••••••••• 18

10) Common Programming Mistakes ••••••••••••••••••••••••••••••• 19

1

MAKING BACKUPS

The first thing you should do before using the TRS-80
Pascal system is to make backup copies of the two supplied
master disks. Follow the steps below to create your
backup disks.

1) Insert a TRSDOS Version 6 operating system disk into
drive O and press the reset key.

2) When prompted with Date?, type in the current date in
the form mm/dd/yy and press the <ENTER> key. The screen
will then display TRSDOS Ready.

3) Insert a new blank disk into drive 1 and type
format :1 <ENTER>. Answer the prompts as follows:

Diskette name? PASCAL! <ENTER>
Master password? password <ENTER>
Single or Double density <S,D>? d <ENTER>
Number of cylinders? 40 <ENTER>

The operating system will now format the disk and
display the message "Formatting complete" when finished.

4) Now type: backup :0 :1 (x) <ENTER>
When prompted with Insert SOURCE disk <ENTER>,
insert the TRS-80 Pascal disk labeled "Disk 1 of 2"
into drive O and press the <ENTER> key. The operating
system will make a mirror image backup and then display
the message: Insert SYSTEM disk <ENTER>. Insert the
TRSDOS Version 6 operating system disk back into drive 0
and press the <ENTER> key.

6) Repeat steps 3 and 4 using the diskette name PASCAL2
instead of PASCALl in step 3 and "Disk 2 of 2" instead
of "Disk 1 of 2" in step 4.

7) Label the backup disks as PASCALl and PASCAL2.
Place your master TRS-80 disks in a safe place and
use the backup copies.

- 2 -

FILE CONFIGURATION

The Pascal system files should now be arranged to
provide a useful configuration for program development.
How the files are arranged depends on the drive
configuration of your Model 4.

Hard Disk Users

If you have a hard disk drive, then one useful
configuration is to copy all the TRS-80 Pascal files onto
drive O of the hard disk. This may be accomplished by using
the backup by class command after booting the hard disk
system. Place the disk labeled PASCAL! into one of the
floppy drives. If the floppy drive number is 2, then the
following command may be used to copy all the PASCALl files
to drive O of the hard disk.

TRSDOS Ready
backup :2 :0 (new) <ENTER>

Repeat the process using the disk labeled PASCAL2.

Floppy Disk Users

There are many ways of arranging the supplied Pascal
files to provide a suitable configuration for program
development. How you arrange the files is dependent
on the number of drives available.

If you have more than two floppy drives, a useful
configuration would be to use drive O for the operating
system, drive 1 for either the PASCALl or PASCAL2 disk,
and the remaining drives for storing the programs being
developed.

If you have only two drives, follow the configuration
steps outlined on the next page. This is a sample 4 disk
configuration that combines only the necessary operating
system files with selected Pascal files. With this
configuration, drive O will be used as a system disk
(containing the necessary operating system files and
selected Pascal files) and drive 1 will be used as a data
disk (containing the programs being developed).

- 3 -

Configuration for a 2 drive system

step 1) Make 4 backup copies of your original TRSDOS Version
6 operating system disk and label the backup copies
as SYSTEMl through SYSTEM4.

step 2) Insert SYSTEMl into drive O and PASCALl into drive 1.
Type: DO =SYSTEMl <ENTER>
All unnecessary operating system files will be deleted
from SYSTEMl and the following Pascal files will be
copied from PASCALl to SYSTEMl: (PASCAL/CMD, EDIT/CMD,
RUNP/CMD ERRORS/DAT, SETUP/EDT, SAMPLE/EDT, CMD/HLP,
HELP/HLP, KEY/HLP)

step 3) Insert SYSTEM2 into drive 0.
Type: DO =?YSTEM2 <ENTER>
All unnecessary operating system files will be deleted
from SYSTEM2 and the following Pascal files will be
copied from PASCAL! to SYSTEM2: (SETEDIT/CMD,
STRINGS/PCL, TRSLIB/PCL, DATABASE/PCL}

step 4) Insert SYSTEM3 into drive O and PASCAL2 into drive 1.
Type: DO =SYSTEM3 <ENTER>
All unnecessary operating system files will be deleted
from SYSTEM3 and the following Pascal files will be
copied from PASCAL2 to SYSTEM3: (PASCALB/CMD, PASCAL/OVl,
PASCAL/OV2, PASCAL/OV3, PASCAL/OV4, LINKLOAD/CMD,
ERRORS/DAT, STRINGS/OBJ, TRSLIB/OBJ, RANDOM/OBJ}

step 5) Insert SYSTEM4 into drive O.
Type: DO =SYSTEM4 <ENTER>
All unnecessary operating system files will be deleted
from SYSTEM4 and the following Pascal files will be
copied from PASCAL2 to SYSTEM4: (CODEGEN/CMD,
OPTIMIZE/CMD, CODEINIT/DAT}

The disk labeled SYSTEMl contains all the Pascal files which
·are necessary to edit, compile, and execute programs. This is
the only system disk needed for beginning programmers. The
programs on SYSTEM2 through SYSTEM4 are for more advanced
programming.

The disk labeled SYSTEM2 contains a utility for creating
customized setup files for the editor. A couple of files
contain the external declarations for the library routines.
A sample Pascal database program is also on this disk.

The disk labeled SYSTEM3 contains the overlayed compiler
for compiling large programs, the linking loader for building
executable command files, and the object code for the library
routines.

The disk labeled SYSTEM4 contains utilities for optimizing
the size and/or speed of a program.

- 4 -

Overall System View

The following diagram illustrates the program development
process:

USER

create the program execute the program

V ---- -----
EDIT/CMD

save,
source
program

/PCL

compile the program

V V --------
PASCAL/CMD or
PASCALB/CMD

RUNP/CMD or
LINKLOAD/CMD

read
source
program

/PCL

V

save
object
program

/OBJ

RUNP/CMD
load object
and execute

-------------------> DISKETTE
STORAGE

- 5 -

<------------------
LINKLOAD/CMD

load object and
execute or build

/CMD file

USING THE EDITOR

The remainder of this manual describes the steps of editing,
compiling, and executing a Pascal program. For the
following discussion, it is assumed that the files contained
on the disk labeled SYSTEMl (described in File Configuration
for floppy disk users) are available. If you have a two
drive system, place the SYSTEMl disk in drive 0. If you
have more than two drives or if you have a hard disk, make
sure that the files on SYSTEM! are available on some drive.
You should also have a formatted disk with plenty of free
space for storing programs. If you have a two drive system,
insert a formatted data disk into drive 1.

The editor has many commands which are internally mapped to
standard ASCII control codes. These codes are generated
from the keyboard by holding down the key labeled CTRL while
pressing an alphabetic key. For example, the editor command
to move the cursor one character to the right is mapped to
CTRL D. (the editor manual contains a complete listing of
internally mapped commands). An interesting feature of this
editor is that the internal mapping of commands to keys may
be changed. This means that you can design the keyboard
layout to suit your own personal preferences. As an
example, you may want to use the right arrow key (rather
than CTRL D) to move the cursor one character to the right.

Each time the editor is executed, it reads a file named
SETUP/EDT. The editor uses this file to determine how to
operate. At a mimimum, this file must contain information
about the Model 4 terminal. For example, the editor must
know how to position the cursor on the screen. Optionally,
the file may contain information about how editor commands
are mapped to keys. For example, it may tell the editor
that the right arrow key should cause the cursor to move to
the right.

The supplied file named SETUP/EDT contains only information
about the Model 4 terminal. This setup file will cause the
editor to only understand the internally defined mapping of
commands to keys. In other words, the CTRL key is used to
execute commands. The supplied file named SAMPLE/EDT is a
sample editor setup file that contains the same terminal
information but in addition defines a keyboard layout that
utilizes the Model 4 arrow keys.

The editor manual describes the operation of the editor
based on the internal mapping of commands. At the end of
the manual is a sample setup file that defines a keyboard
layout that utilizes the Model 4 arrow keys. This is the
supplied SAMPLE/EDT setup file. To illustrate how the
editor's operation may be altered, this manual will describe
the editor commands based on using the SAMPLE/EDT setup
file.

- 6 -

Since the editor automatically reads the setup file named
SETUP/EDT, you must rename the setup files in order to use
SAMPLE/EDT. Type the following commands:

TRSDOS Ready
RENAME SETUP/EDT TO SETUP/SAV <ENTER>
RENAME SAMPLE/EDT TO SETUP/EDT <ENTER>

Before executing the editor, make sure that there is
plenty of disk space for storing files. It is a good
practice to write protect the disks which are used as
system disks (for example, SYSTEMl) to prevent data
from being stored on them. On a two drive system, this
will force all files to be stored on the data disk in
drive 1.

The editor may be executed from TRSDOS Ready by typing a
command of the following form:

EDIT filename <ENTER>

The filename is optional. If no file is specified, the
editor will create a new file. The name of the new file
will be specified at the end of ·the edit session. If a file
name is specified, it should be the name of an ASCII
formatted text file with record lengths of 80 characters or
less. The file name may be any legal TRSDOS file name,
including drive specifier. It is suggested that you specify
a drive number with the file name. This will cause the editor
to place the file on that drive when the editor is exited.

The editor reserves a section of memory which is used as a
buffer for storing text. The symbol *EOB is displayed by
the editor to indicate the "end of buffer". If no file is
specified when the editor is executed, the buffer will start
out empty and the *EOB symbol will appear at the top left
corner of the screen. If a file is specified, the editor
will load in the first 100 lines of the file and display a
screen full of lines starting with the first line loaded.

If the buffer is empty, blank lines must be inserted into
the buffer before text may be entered. Each time <CLEAR N>
is typed (holding the CLEAR key down while pressing the N key),
a blank line will be inserted into the text buffer. Once
the buffer has lines in it, you may simply type in the text.
Typing <LEFT ARROW> will cause the cursor to backspace if you
need to correct a typing error. The <ENTER> key will cause the
cursor to be positioned to the beginning of the next line.
The editor will not allow the cursor to be positioned beyond
the *EOB symbol. To enter more text after reaching the end
of buffer, type <CLEAR N> to enter more blank lines into the
buffer.

- 7 -

The most often used editor commands are the ones which move
the cursor around within the text buffer. Most of the cursor
movement commands are mapped to the arrow keys.

There are four basic cursor movement commands. (right,
left, up, and down). Each of these commands moves the
cursor in the specified direction. These commands have been
mapped to the arrow keys. They are executed by simply pressing
the appropriate arrow key.

Key Command Name Function

<RIGHT ARROW> RT (right) move cursor right 1
character

<LEFT ARROW> LF (left) move cursor left 1
character

<UP ARROW> UP (up) move cursor up 1
line

<DOWN ARROW> DN (down) move cursor down 1
line

The above commands provide the ability to position the
cursor any place on the screen. However, moving only a
single character or line at a time can be a little slow.
Other commands are mapped to allow you to move the cursor
more efficiently.

There are two commands that move the cursor left or right by
one tab stop. The tab command moves the cursor to the right
to the next tab stop. The back tab command moves the cursor
to the left to the next tab stop.

Since the text buffer holds more than a screen full of text,
you also need a way to scroll back and forth in the buffer.
The roll up command moves the cursor one screen towards the
beginning of the buffer while the roll down command moves
the cursor one screen towards the end of the buffer.

These commands have also been mapped to the
arrow keys. They are executed by holding down the CLEAR key
while pressing the appropriate arrow key.

Key Command Name Function
--

<CLEAR RIGHT ARROW> TB (tab) move cursor right to the
next tab stop

<CLEAR LEFT ARROW> BT (back tab) move cursor left to the
next tab stop

<CLEAR UP ARROW> RU (roll up) move one screen toward
the top of the buffer

<CLEAR DOWN ARROW> DN (roll down) move one screen toward
the bottom of the buffer

- 8 -

(

Other commands provide the ability to move the cursor greater
distances even more efficiently. The beginning of line command
positions the cursor at the beginning of the line. The end of
line command positions the cursor at the end of the line. The
top of buffer command displays the first line in the buffer at
the top line of the screen. The bottom of buffer command positions
the cursor at the *EOB mark at the end of the buffer.

These commands are also mapped to the arrow keys. They are
executed by pressing and releasing the BREAK key and then pressing
the appropriate arrow key.

Key Command Name Function

<BREAK RIGHT ARROW> EL (end line) move cursor to the end of
the line

<BREAK LEFT ARROW> BL (beginning move cursor to the beginning
line) of the line

<BREAK UP ARROW> TP (top of display the first line in
buffer) the buffer at top of screen

<BREAK DOWN ARROW> BB (bottom of move the cursor to the *EOB
buffer) mark at the end of buffer

Seven commands are mapped to alphabetic keys. You have already
used one, the insert line command. There are three commands that
delete either a character, word, or line.

The undelete line command may be used to restore a line that
was accidentally removed by the delete line command. There is
also a duplicate line command that may be used to make a duplicate
copy of the line above the cursor.

The insert character command may be used to insert
characters in a line. When this command is executed,
subsequent characters that you type will be inserted at the
current cursor position. The editor will continue to insert
characters until a non-printable character (such as the
<ENTER> key) is typed.

These commands are mapped to alphabetic keys. They are
executed by holding down the CLEAR key while pressing the
appropriate alphabetic key.

Key Command Name Function

<CLEAR N> IL (insert insert a blank line at
line) the cursor line

<CLEAR C> DC (delete delete character under
character) the cursor

<CLEAR W> DW (delete delete word under the
word) cursor

<CLEAR L> DL (delete delete line under the
line) cursor

<CLEAR U> UL (undelete restore the last deleted
line) line

<CLEAR D> DU (duplicate duplicate the line above
line) the cursor

<CLEAR I> IC (insert insert characters until
character) a non-printable is .typed

- 9 -

. Six other frequently used commands are mapped to the Model 4
special function keys (Fl through F3).

The forward word command moves the cursor to the first
character of the word to the right. The backward word
command moves the cursor to the first character of the word
to the left. Both the forward word and backward word commands
will move the cursor across line boundaries.

The split line command creates two lines out of one.
This command causes all characters to the right of the cursor
to be moved to a new line below. The merge line command is
used to merge two lines. As many characters as will fit on a
line are moved from the line below the cursor to the end of
the line containing the cursor.

The insert mode command is similar to the insert character
command. However, it does not terminate when a non-printable
character is typed. The editor continues to insert
characters until the insert mode command is executed again.
This command toggles the editor in and out of insert mode.
While in insert mode, the editor inserts a blank line when
the <ENTER> key is typed. If the <ENTER> key is typed in the
middle of a line, the characters to the right of the cursor
are moved to the next line.

The last command that you must know is the command that
places the editor in command mode. Command mode allows all
editor commands to be executed. This is important since not
all commands are mapped to a key. When this command is
executed, the editor displays angle brackets<> at the
bottom left corner of the screen. Then any editor command
may be executed by typing its two character command name
followed by the <ENTER> key. For example, UP <ENTER> would
execute the cursor up command and then exit command mode.

These commands are executed by pressing the appropriate
function key. Three of them require that you hold down the
shift key while pressing the function key.

Key Command Name Function

<Fl> CM (command enter command mode
mode)

<F2> BW (backward move the cursor left
word) word

<F3> FW (forward move the cursor right
word} one word

one

<SHIFT Fl> IM (insert enter permanent insert
mode) character mode

<SHIFT F2> SP (split split the line at the
line) cursor

<SHIFT F3> MG (merge merge the line below
line} with the cursor line

- 10 -

The commands described so far should be quite adequate for
handling most of your editing needs. The editor has many
other commands which are described in the editor manual.
Once you become familiar with these commands, you will want
to read the editor manual for information on other available
commands.

For now, the only other commands you
commands to terminate an edit session.
commands, you must enter command mode.
earlier, pressing the <Fl> function key
command mode.

must know are the
To execute these
As described
puts the editor in

Two commands may be used to terminate an edit session.
The first command is EX (exit). This command should be used
if you wish to save the text to a file. The other command is
QT (quit). This command should be used if you wish to
terminate the edit session without saving the text.

The EX command requires two parameters, the name of the
file to which the text will be written, and whether or not
you wish the editor to create a backup file. The editor
will prompt you to enter both of these parameters when EX
<ENTER> is typed. The first prompt is for the file name.
If creating a new file, now is the time that the file name
must be specified. Simply type in a valid file name. If
editing a pre-existing file, you may simply type <ENTER> to
the file name prompt. The text will be written to the file
specified when the editor was executed. The second prompt
is whether or not to create a backup file. You may answer
this prompt by typing either Y for yes or N for no, followed
by the <ENTER> key. Simply typing the <ENTER> key for this
prompt is equivalent to typing Y <ENTER>. A backup file is
created only if the file being edited already exists. The
file specified in the EXIT command is renamed with the
extension /BAK before the new file is written out. The
backup file may be used to restore a file if the file is for
some reason damaged. The backup file will reflect one edit
session prior to the current one.

The QT command is used to terminate the edit session
without saving anything. Simply type QT <enter>. You
will then be prompted to make sure that this is what you
really want to do. If you answer Y <enter), the
editor terminates. Otherwise, the edit session is
continued.

- 11 -

ENTERING A SIMPLE PASCAL PROGRAM

Now that you know how to use the editor, a simple Pascal
program may be created. Make sure that the SYSTEM! disk is
in drive O and a formatted data disk is in drive 1. Drive 1
will be used to store the program so make sure that there is
plenty of free disk space on drive 1 before beginning.
First type EDIT <ENTER> and the editor is executed. Since
no file was specified, *EOB will appear at the top left
corner of the screen. Type <CLEAR N> four times to enter four
blank lines into the buffer.

Note: Blank lines are inserted automatically when the
<ENTER> key is pressed if the editor is in insert
mode. The editor is toggled in and out of insert
mode by pressing <SHIFT Fl>.

Type in the following text.

PROGRAM TEST;
BEGIN

WRITELN(' THIS IS MY FIRST PROGRAM.)
END.
*EOB

Once the text as been entered as shown above, type <Fl> to
enter command mode. Execute the exit command and answer the
two prompts as shown below.

<> EX <ENTER>

<EXIT>FILE: TEST/PCL:l <ENTER>

<EXIT>BACKUP? <ENTER>

The program will be saved to the file TEST/PCL on drive 1
and the editor will exit to the operating system. It is
important to name your Pascal source files with the
extension /PCL because the compiler uses this as the default
extension.

- 12 -

)

COMPILING THE PROGRAM

The compiler must now be used to translate the Pascal
program to object format. Once in object format, the program
may be executed. Type the following to compile the program
created on the previous page.

PASCAL TEST:l <ENTER>

The Pascal compiler will execute and begin reading the file
TEST/PCL on drive 1. As each line is read, it is translated
to object code. The compiler will write the object code to
the file TEST/OBJ on drive 1. The compiler also sends a
listing to the screen as it compiles. The listing will show
if there are any errors in the program being compiled. The
below listing was generated by compiling the sample test
program.

TRS80 PASCAL VER: 00.02.00 14000000 xx:xx:xx xx/xx/xx PAGE 1

1 PROGRAM TEST;
2 BEGIN
3 WRITELN(' THIS IS MY FIRST PROGRAM.)

***** -202
4IEND.

***** A 20, 4, 13
4 ERRORS DETECTED

4 ') ' EXPECTED
13 'END' EXPECTED
20 1 , 1 EXPECTED

202 STRING CONSTANT CANNOT SPAN LINES

STACK USED= xxxx OF xxxx HEAP USED= xxxx OF xxxx

As you can see, the compiler detected some errors in the
program. The compiler always writes an error message line
following the line where the error was detected. The error
message line begins with 5 asterisks to clearly indicate that
an error was detected. It also contains a pointer to the
line above at the approximate location of the error. Following
the pointer is an error code telling the type of error detected.
At the end of the listing, all generated error codes are listed
with a brief explanation of the error.

All Pascal programs, including the compiler, use a section
of memory which is divided into two parts. One part is the
stack and the other part is the heap. The stack is used to
store most variables. The heap is used to store dynamic
variables and file descriptors. When the compile is finished,
the amount of stack and heap used out of the total amount
available is displayed on the screen.

- 13 -

Because of the context in a Pascal program, a single
error in the program can generate multiple error messages.
Usually, the first error code will describe the real cause
of the error. In this example, the first error detected
is on line 3, error code 202. Error code 202 says that a
string constant cannot span lines. This error was caused by
the failure to include a closing quote for the string in line
3. The other 3 detected errors are a side effect of the first
error. The compiler automatically creates a file named

PASCAL/ERR

when errors are detected in a program. Only the lines
containing errors, along with the error message line, are
written to this file.

The program should now be corrected before it is executed.
The following will cause the editor to execute and display
file TEST/PCL on the screen.

EDIT TEST/PCL:l <ENTER>

Move the cursor to the third line of the program and add a
closing quote just prior to the right parenthesis. The
third line should then look as follows.

WRITELN{' THIS IS MY FIRST PROGRAM. ')

Type <Fl> to enter command mode and type EX <ENTER> to exit
the editor. The two prompts may be answered by simply pressing
the <ENTER> key.

Now the program may be compiled once again by typing the
following.

PASCAL TEST:l <ENTER>

The following listing will be sent to the screen as the
program is compiled.

TRS80 PASCAL VER: 00.02.00 14000000 xx:xx:xx xx/xx/xx

PROGRAM TEST;
BEGIN

1
2
3
4

WRITELN(' THIS IS MY FIRST PROGRAM.')
END.

TEST
NO ERRORS DETECTED

NO ERRORS DETECTED

STACK USED= xxxx OF xxxx HEAP USED= xxxx OF xxxx

PAGE 1

This time no errors were detected. The program is a legal
Pascal program. Now that the program has been compiled with
no errors, it may be executed.

- 14 -

,)

(

RUNNING THE PROGRAM

Once the program has been compiled without errors, it can
be executed with the RUNP command. Type the following to
execute the program in file TEST/OBJ on drive 1.

RUNP TEST:l <ENTER>

The files used in a Pascal program are logical files. This
means that the name of a file used in the program is not
necessarily the same name as the actual physical disk file
name. When a file is opened within a Pascal program, a
prompt will appear on the screen. The prompt identifies the
logical file name used in the program. You should then type
in the actual disk file name which will be used when the
program performs input or output to that logical file. This
provides you with the ability to direct input and output to
different files or devices each time the program is executed.

Two standard predeclared logical files in Pascal are INPUT.
and OUTPUT. These files are automatically opened when a
program is executed. Therefore, each time you execute a
program, the following prompts appear on the screen.
(note: the SETACNM library procedure, explained in the
System Implementation Manual, may be used to eliminate file
prompts)

INPUT =
OUTPUT =

The prompts occur for these two logical files whether they
are used in the program or not. If you type in a file name,
the program will use that file name when performing input or
output. You may also simply type the <ENTER> key in reply
to a logical file prompt. If the logical file is an input
file, input will be received from the keyboard. If the
logical file is an output file, output will be sent to the
screen (or CRT).

The sample program uses only the logical file OUTPUT. This
logical file is implicitly used by the WRITELN procedure. You
may simply press the <ENTER> key for both the INPUT and OUTPUT
file prompts. The WRITELN procedure will then cause the
following to be printed on the screen.

THIS IS MY FIRST PROGRAM.

When a program terminates, (ie. finishes execution normally),
the address of the last instruction executed is displayed on the
screen. Following this is the amount of stack and heap used by
the program. The stack and heap are explained in the System
Implementation manual. The miscellaneous patch section of the
System Implementation Manual also explains how to prevent this
information from being displayed.

- 15 -

The file names that you type to direct Pascal input and
output are the same format as normal TRSDOS file names. The
disk drive specification is optional. Devices may also be
specified instead of a file name. For example, the name of
the line printer is ":L". The name of the terminal which is
the keyboard for input and the CRT for output, is ":C".
Simply typing the <ENTER> key is equivalent to typing ":C".
There is also a dummy device. If a logical file is
associated with ":D", then no actual output occurs. This is
useful if you wish to discard certain outputs. For example,
the listing may be discarded during a compile or you might
discard some of the output generated by a program when it is
executed.

The Pascal compiler always uses the extension /PCL if the
file name is specified when the compiler is executed. The
compiler may also he executed by simply typing PASCAL
without a file name. If executed in this manner, the
compiler will prompt for the Pascal SOURCE file name, the
file to use for the LISTING, and the file to use for the
OBJECT. Either a file name or a device may be specified.
If a file name is specified, the complete file name,
including extension, must be used. (ie. the compiler does
not use default extensions)

The RUNP utility uses the default extension /OBJ if no
extension is specified in the file name. You may also
specify an extension if the object code is in a file named
with an extension other than /OBJ. For example, RUNP TEST/COD
might be used.

Alternate Symbol Representations

The Pascal compiler recognizes alternate representations
of certain symbols because not all terminals have the ability to
generate them. Either representation may be used.

Symbols with alternate representations:

generated on
symbol Model 4 by alternate
------ ------------ ---------

{ clear shift < (*
} clear shift > *)

clear . @ I

[clear < (.
1 clear > .)

- 16 -

TROUBLE SHOOTING GUIDE

(Miscellaneous Errors)

1. Problem - While editing a file, the latter part of a file
is found to be missing.

Answer - Need to use the APPEND command to page the latter
part of the file into the text buffer. See the
Editor Manual.

2. Problem - Upon exiting the editor, a PHYSICAL IO error
message is displayed.

Answer The disk is full. Make sure that there is plenty
of free disk space when editing files.

3. Problem - During a compile, the Pascal compiler abnormally
terminates with a FATAL ERROR - OUT OF HEAP,
or OUT OF STACK

Answer - The compiler does not have enough memory.
Use the PASCALB version of the compiler.

4. Problem - When executing your compiled program with the
RUNP command, or a command (/CMD) file built with
the LINKLOAD utility, it abnormally terminates with
the FATAL ERROR - OUT OF HEAP, or OUT OF STACK

Answer - Specify the amount of stack when using the RUNP
command or the build command of the linking loader.
(See the System Implementation Manual)

5. Problem - After executing the compiler using the long form
where the OBJECT and LISTING files are specified,
the original source file suddenly contains object
code.

Answer - The /PCL extension was used when specifying the
object file.

- 17 -

COMMON ERROR MESSAGES

(By the Compiler)

13 END expected - There must be an END for every BEGIN
in a Pascal program.

52 THEN expected - IF statements require use of the reserved
word THEN.

54 DO expected - FOR statements require use of the keyword DO.

104 undeclared identifier - All variables must be declared in
a Pascal program.

119 semicolon expected - The preceding declaration or statement
is not terminated by a semicolon(;).

127 type of actual parameter does not match formal parameter -
An attempt to call a procedure or function with an argument
that does not match the type of the formal parameter.
In special cases, the type matching requirements may be
overridden by using the type transfer operator(::).

129 type conflict of operands in an expression - An attempt
to use an operator with two variables of different types.

154 actual parameter must be a variable - Using a constant instead
of a variable when calling a procedure whose formal parameter
is preceded by VAR.

Unexpected End of File - A period does not follow the last
END of the program or a comment is missing the closing
comment symbol} or*).

(Runtime Error Messages)

The error codes discussed above are generated by the compiler
due to an error in the Pascal source program. There are times
when the compiler may generate a fatal error message that is
not due to an error in the source program. These are called
runtime errors because they are detected by the runtime that
is included with all Pascal programs, including the compiler.
The following are examples of runtime errors.

RUNTIME ERROR 01
(Caused by trying
RUNTIME ERROR 02
(Caused by trying
RUNTIME ERROR 09

OUT OF STACK
to compile or run too large of a program)

OUT OF HEAP
too compile or run too large of a program)

(file not found or disk error)

Note: Explanation of COMPILER and RUNTIME error codes may be
found in the appendix of the Reference Manual.

- 18 -

(

COMMON PROGRAMMING MISTAKES

1. For variable types to match in expressions and not generate
compiler error messages, they must be explicitly declared to
be of the same type in the declaration section. For example:

PROGRAM TEST;
VAR A:ARRAY[l •. 5]0F CHAR;

B:ARRAY[l •• 5]0F CHAR;
BEGIN

A:=B;
END.

will generate a type conflict message by the compiler although
the types appear to match. The following examples will not
generate an error message and are perfectly legal in Pascal.

PROGRAM TEST;
VAR A,B:ARRAY[l •• 5]0F CHAR;
BEGIN

A:=B;
END.

PROGRAM TEST;
TYPED= ARRAY[l •• 5]0F CHAR;
VAR A :D;

B :D;
BEGIN

A:=B;
END.

2. A procedure declaration that has non-NAMED types in the
parameter list is illegal in Pascal. (ie. the following
is illegal.}

PROGRAM TES'r;
PROCEDURE EXAMPLE(VAR A:ARRAY[l •. 5] OF CHAR}; EXTERNAL;

BEGIN
END.

The following is legal:

PROGRAM TEST;
TYPED= ARRAY[l •• 5] OF CHAR;

PROCEDURE EXAMPLE(VAR A:D}; EXTERNAL;
BEGIN
END.

3. Placing a; (semicolon) before the ELSE part
of an IF THEN ELSE statement is illegal.

illegal:

legal:

IF X=Y THEN A; ELSE B

IF X=Y THEN A ELSE B

- 19 -

)

C

..

(

EDITOR MANUAL

Table of Contents

1) INTRODUCTION ••• 3

2) BLAISE II OVERVIEW •••• 4

A. Editor Setup Files. 4
B. The SETEDIT Program. 5
c. Text Buffer Management. 6
D. The Work File •• 7
E. Compose Mode. 7
F. Command Mode. 8

3) GETTING STARTED •••••••••••••• 9

A. Editor File Configuration. 9
B. Terminal Configuration •••••10
c. The EDIT Command .•••••12
D. Basic Editor Commands (keyboard mapped) •• .13
E. Editor Help Files •••• • ••• 18
F. Sample Edit Session. ...• 19
G. Swapping Disks During Edit Session. ••• 21

4) EDITOR COMMANDS •••.••••.••••••••••.••..••••••••.•..••••.• 2 2

5)

A. Command Parameters •••• ••• 2 2
B. Editor State Commands.24

1. No Parameters •.••..•24
2. Parameters ••••..•••26

c. Cursor Positioning Commands.27
1. No Parameter27
2. Parameters •.••••28

D. Character Commands.30
E. Line Commands ..• • .•• 31
F. String Commands ••.•32

1. No Parameters •. .. .32
2. Parameters •••.• ..32

G. Block Commands •.•• • • 3 4
1. No Parameters. • 3 4
2. Parameters ••••• 3 5

H. File Commands •••• ..36
I. General Commands. 41
J. The EDIT Command •.42

CHANGING EDITOR CHARACTERISTICS •.•••.•.•••.•..•43

A. Translating Keyboard Characters to Commands .•
B. Defining Macro Commands ••••••••...•••••••••.•

1

..43
.45

6) EDITOR SETUP FILES.

A. Normal Commands.
1. The TABS Command.
2. The ROLL Command.
3. The AUTOINDENT Command ..
4. The TRANS Command ..
5. The DEFINE Command.

B. Special Commands .••.•
1. The INIT Command .•
2. The EXIT Command.
3. The START Command •.••••.
4. The CMD Command ••..
5. The HEIGHT Command.
6. The WIDTH Command ..•
7. The TERMINAL Command.
8. The CURSOR Command.

.

.
. . .

.

.48

. . 49
. 49
. 49

..... 49
. 49

.. 49

..so

..50
.50

. ••. 50
• •• 51

• •.••••. 51
. .••.•... 51

.52

.53

C. Sample Setup file •..•..•••••.••..•..••••••.•••.•.•..•. 54

APPENDIX

A. Sample Custom Terminal Setup •.•••••..•.•..•....•.. 57

2

INTRODUCTION

A text editor is simply a program that is used to enter
text and save the text to a file. Usually, text editors
are classified into one of two categories, line or screen
editors.

Line editors are called as such because they operate
on text a line at a time. Typically, you must view the text
being edited by listing the lines that fall between two
specified line numbers. Usually, the text must be modified
by typing commands which operate on a specified line number.
To change a character on a line, you often must use a
command rather than being able to position the cursor to the
bad character and correcting it.

Screen editors are called as such because they operate
on a screen full of text at a time. A screen editor gives
you much more context when editing a file. You are able to
move the cursor around on the screen, changing the text by
simply typing over the incorrect text. Rather than thinking
in terms of line numbers, a screen editor allows you to
scroll through the text a page at a time. A screen editor
makes editing much easier by providing more powerful
commands and an environment which allows you to see what
you are changing as you change it.

The Blaise II text editor is a screen editor. It provides
a very good tool for entering your programs or other textual
documents. Some of the features found in word processors have
been included in the Blaise II editor. Although it was
designed for program entry, you may find that it serves many
of your word processing needs as well.

- 3 -

BLAISE II OVERVIEW

This chapter provides a brief description of the major
features of the Blaise II text editor. It should provide
you with a basic understanding of how the editor operates.
The actual use of the editor is more completely explained in
the following chapters.

Blaise II is a very powerful text editor with many commands
and features. It is designed so that the user may change
the characteristics of the editor to conform to personal
preferences. As supplied, the editor is internally
configured to map the most frequently used commands to the
keyboard. These commands are executed by typing control
characters. It is suggested that the inexperienced user
learn how to use the editor with this standard
configuration. The experienced user may want to alter the
editor characteristics so that it operates similar to some
other familiar editor.

A. Editor Setup Files

Before the editor may be used, it must be configured for
the type of terminal used by your computer. The editor uses
what is called a setup file to perform this configuration.
A setup file is simply a file containing commands that the
editor understands. Each time the editor is executed, it
loads in the setup file and configures itself based on the
these commands. The commands in a setup file tell the
editor about the terminal's special features.

The setup file may also contain commands that cause the
editor to default to some desired state. You may do things
such as define how keys are mapped to editor commands, or
define new commands which are composed from the set of built
in commands.

- 4 -

_)

)

(

B. The SETEDIT Program
--

The SETEDIT program is a utility program used to create
setup files for use with the editor. This utility provides
a menu of commands which allow various setup file related
operations to be performed. Following is a list of the
commands.

T = define terminal characteristics
R = read a text format setup file
w = write a binary setup file
I = input a binary setup file
0 = output a text setup file
H = display help information
E = exit

The SETEDIT utility must at a minimum be used to create
a setup file which contains terminal information. The
editor must know what kind of terminal is being used before
it can properly display text. The T command provides a list
of commonly used terminals. If your system uses one of the
listed terminals, then terminal definition is accomplished
simply by selecting the proper terminal.

The editor requires binary formatted setup files. Once the
proper terminal has been selected, a binary setup file may
be created using the W command. The editor uses the file
SETUP/EDT as the default setup file. When the editor is
executed, it loads this file if no setup file is specified.
Once the terminal information is written to this setup file,
the editor may be used.

If you wish to view or modify the terminal information
created by the SETEDIT utility, you may use the O command to
output the information in text (readable) form. It is
important to note that the editor can edit text formatted
files only. However, the setup files used to configure the
editor must be in binary format.

The SETEDIT utility has the ability to read either text
or binary formatted setup files with the Rand I commands
respectively. A binary formatted setup frle must have been
previously created by SETEDIT. A text formatted file may be
created using the editor. The SETEDIT utility may be used
to combine multiple setup files and terminal information
into one single setup file. For example, after creating the
binary setup file containing the terminal description only,
the editor may be used to create a text formatted setup file
with other commands. Then the SETEDIT utility may be used
to read both the files and write the combined information
out to another file.

- 5 -

C. Text Buffer Management

The editor maintains a fixed size buffer for storing text.
The buffer will hold approximately 10500 characters on the
Model 4. All editor commands except for specific file
commands operate only on the te.xt in this buffer. When
editing very large files, the file must be edited a section
at a time. Starting at the beginning of the file, a section
is loaded into the text buffer. Before loading another
section of the file into the buffer, buffer space must be made
available by writing the text out to a work file. Then the
next section may be loaded into the buffer. This process
may be repeated until the whole file has been loaded and
edited.

When editing arl existing file, the editor loads the first
100 lines only. This leaves ample buffer space for adding
more lines and performing the various editing functions. If
the file is longer than 100 lines, the APPEND command may be
used to load more text from the file into the buffer. With
this command, you specify how many lines to copy from the
file to the buffer. The copying begins one line past the
last line previously loaded from the file. The text being
copied from the file is appended to the end of the text in
the buffer. If the file is very large, it is possible for
the buffer to become full. If this happens, a MEMORY
EXHAUSTED message is displayed. The WRITE command must then
be used to write some of the text in the buffer back out to
a work file. With this command, you specify how many lines
to copy from the buffer to the work file. The copying
begins with the first line in the buffer and continues until
either the buffer is empty or the specified number of lines
have been written. Once lines have been written from the
buffer to the work file, they may not be edited again during
the current edit session. The following diagram illustrates
this process.

edit text
--------------- APPEND ------------- WRITE -----------

! original file I ------> I text buffer I -----> I work file I

If the editor is exited before the entire file has been
loaded into the buffer, the editor will copy the remaining
lines in the original file to the work file.

The editor displays one of two symbols at the end of the
text buffer. The EOB symbol signifies the end of the
buffer. If editing a pre-existing file, the symbol
displayed will be EOF if all text has been loaded from the
original file into buf r.

- 6 -

D. The Work File

The editor creates temporary files during an edit session.
These temporary files are called work files. The main work
file is a copy of the file being edited. Its purpose is to
prevent a system crash from damaging the original file.· If
such a crash occurs during an edit session, the original
file is left unchanged. The main work file is named
TOnl.TMP where n is either 1 or 2 depending on the level of
the edit. The level isl when editing a single file. If
the EDIT command is used during an edit session, a second
work file is created, level 2. After successfully exiting,
if the work file is on the same disk as the original file,
then the work file is renamed as the original and the
original file is either deleted or renamed as a backup file.
If the work file is on a separate disk from the original,
then it is copied over the original after which the work
file is deleted.

The work file is usually placed on the same drive as the
original file. If you are creating a new file and the WRITE
command is used, the work file is placed on the default drive.
When the work file is on the same drive as the original,
there must be enough free disk space to accomodate two
copies of the original file.

The editor block movement commands also cause the editor
to create a work file. This work file is used as temporary
storage for the block of data being moved. The name for
this work file is TOn3.TMP where n is either 1 or 2 as
above. The editor does not delete this work file.

E. Compose Mode

The editor has two modes of operation, compose mode and
command mode. When the editor is executed, it starts out in
compose mode. In this mode, you may type in text much the
same way as you would with a typewriter. The text that you
type is stored in the text buffer. While in this mode, you
have access to many editor commands. For example, there are
commands to move the cursor around on the screen. These
commands are mapped to specific control characters which may
be generated from the keyboard. A control character is
generated by holding down the key labeled CTRL while
pressing an alphabetic key. For example, CTRL X will cause
the cursor to move down one line, CTRL G deletes the
character under the cursor, etc. Therefore, compose mode
allows you to enter text and to move around in the text
performing various operations with control characters.

- 7 -

F. Command Mode

One control character is mapped to a command which causes
the editor to switch from compose mode to command mode.
When CTRL Z is typed, the editor displays angle brackets<>
at the bottom left of the screen and goes into command mode.

Command mode provides the ability to execute any command
in the editor. Since not all editor commands are mapped to
control keys, it is necessary to go into command mode to
execute the unmapped commands. All commands in the editor,
whether mapped to keys or not, have a two character
mnemonic. While in command mode, the commands are executed
by typing the two character mnemonic followed by the <enter>
key.

..
Command mode provides a convenient alternative method of

executing editor commands. The editor has so many different
commands that it is impossible to map all commands to keys
in a manner that is logical and easily remembered. A
mnemonic is often easier to remember than a control
character sequence. The two character mnemonic reflects the
actual function of a particular command while a control
character sequence may not.

Command mode is entered from compose mode by typing CTRL z.
Angle brackets appear at the bottom left corner of the
screen and the cursor is placed to the right of the
brackets. Any command may then be executed by typing its
two character mnemonic followed by the <enter> key. If
there are typing errors, CTRL H may be used to backspace and
make corrections. Once the command has finished execution,
the editor returns to compose mode. The screen will reflect
any changes caused by the execution of the command. To
return to command mode, a CTRL z must be typed once again.

A convenient way of operating the editor is to execute
often used commands from compose mode and seldom used
commands from command mode. For example, the cursor
positioning commands {cursor right, cursor left, cursor up,
cursor down} are used constantly. It would be inconvenient
to execute these commands from command mode. On the other
hand, the directory command (DI) is seldom used. Rather
than try to remember what control sequence it is mapped to,
it may be easier to remember the mnemonic DI and execute
this command from command mode.

- 8 -

)

GETTING STARTED

The text editor is composed of the main command file
EDIT and several help files with the extension HLP.
The help files contain information about the editor commands
and may be accessed during an edit session. They are not
necessary for the operation of the editor. They simply
provide helpful information if needed.

The SETEDIT command file is a utility for creating a
setup file which the editor must use to obtain information
about the terminal of the computer system. Before the
editor may be used, the SETEDIT utility must first be used
to create a binary setup file named SETUP (with the
extension EDT). Each time the editor is executed, it loads
this file and configures itself by executing the commands in
the setup file. Since the terminal is an integral part of
some computer systems, it is possible to configure a setup
file for these systems and include it on the master disk.
If your disk contains a file named SETUP, then it is not
necessary to execute the SETEDIT utility.

A. Editor File Configuration
=====================-------

The EDIT command file and the SETUP default editor
setup file are both necessary to execute the editor. The·
help files {HLP extensions) are not necessary unless you
wish to use them to display information about the editor
during an edit session. The files may be placed on any
drive number.

- 9 -

B. Terminal Configuration

A setup file called SETUP (with extension EDT) must be
created before the editor may be used. On some systems,
this file may already exist. If so, then this section may
be skipped.

The SETEDIT utility must be used to define the
characteristics of your particular terminal. The SETEDIT
utility contains built in tables for the most widely used
terminals. If you are using one of these terminals, then
defining the terminal characteristics is a simple matter of
selecting the proper terminal from a menu.

The following steps will guide you through the creation of
the editor setup file.

1) Type SETEDIT <enter> to execute the utility

2) A menu will be displayed followed by a prompt to
enter a selection. Type T <enter> to define terminal
characteristics.

3) A list of terminals will be displayed, each preceded
by a number. Type <enter> to view the remainder of the
built-in terminal types. You will then be prompted to
select a terminal. If your terminal is listed, then
type in the correct number and proceed to step 5.

Otherwise, you should select CUSTOM.

Once CUSTOM has been selected, you will be prompted for
the type of cursor adressing. You must specify either
binary or ascii. The cursor is positioned to a particular
location on the screen by specifying a row and column
number. Some terminals use a single character to
specify the row or column number. This is binary
addressing. Other terminals expect a sequence of ascii
digits to specify the row or column. This is ascii
addressing. Normally, the O row or column position is
not addressed with a O value. The next prompt will ask
for an offset value corresponding to row or column O.

- 10 -

The next prompt is for which comes first, the row or
column address? You will then be prompted for the
character sequence preceding the row/column address.
Next come two prompts for the character sequence between
the row/column addresses and following the row/column
addresses. If your terminal does not require any such
sequence, simply type <enter> to these two prompts.
Proceed to step 4.

4) You will be prompted for information about your terminal's
characteristics and will need your terminal manual to
answer the questions. The first two prompts are for
the HEIGHT and WIDTH of your terminal. The height
is the number of lines on the screen. The width is the
number of characters on a line. The next sequence of
prompts ask "does your terminal have this function?".
If you answer yes, then you will be prompted to enter
the character sequence to perform that particular
function. {see the example in the appendix) The
following is a list of the functions which the editor
supports.

clear to end of screen - clear the screen from the current
cursor position to the end of the

clear to end of line

insert line

delete line

delete character

enter insert mode

exit insert mode

scroll 1 line down

insert 1 character

scroll 1 line up

screen.
- clear the line from the current

cursor position to the end of line.
- insert a blank line at the current

cursor positon.
- delete the line at the current

cursor positon.
- delete the character at the current

cursor position.
- cause the terminal to insert all

subsequent characters at the
current cursor position.

- cause the terminal to stop
inserting.

- shift each line on the screen down
by one line.

- insert a character at the current
cursor position.

- shift each line on the screen up
by one line.

5) The main menu is now displayed. Type W <enter> to
write a binary setup file and you will be prompted for
a file name. Type the name SETUP with the extension
EDT and press the <enter> key. The file will
be written to disk. A drive specifier may also be
included as part of the file name.

6) The main menu is once again displayed. Type E <enter>
to exit the program. The setup file has been created
and the editor may now be used.

- 11 -

C. -The EDIT Command

The editor may be executed in several different ways.
When creating a new file, simply type EDIT <enter>. The
editor will configure itself with the default setup file
and display *EOB at the top left corner of the screen
indicating an empty text buffer. You may then insert one
or more blank lines and start entering text.

The second way of executing the editor is to type EDIT
FILENAME, where FILENAME is the name of some pre-existing
text file. A drive specifier may also be included in the
file name. The editor will configure itself with the
default setup file and then load the first 100 lines from
FILENAME. The message LOADING ..• will be displayed at the
bottom of the screen. Once the first 100 lines have been
loaded, the editor will display a screen full of text
starting with the first line and position the cursor at the
top left corner of the screen. You may then begin editing.

The third way of executing the editor is to specify two file
names in the form EDIT FILENAMEl FILENAME2, where FILENAMEl
is the name of the file to be edited and FILENAME2 is the
name of a setup file for the editor to use in configuration.
As noted earlier, the editor by default loads the setup file
named SETUP (with the extension EDT).

By specifying the setup file on the command line, the editor
may be forced to use a setup file of some other name. This
is convenient if you want the editor to default to different
states, depending on the type of editing being performed.
Drive specifiers may be included in either file name.

- 12 -

D. Basic Editor Commands
--

The complete set of editor commands is explained in
the following chapter. This section explains how a selected
subset of the commands is mapped to the keyboard.

The editor has a very large set of commands. Some of
the commands will be frequently used while others will be
used with much less frequency. The commands which are used
most often have been mapped to the keyboard. These commands
may be executed while in compose mode by typing control
characters. The remainder of the commands must be executed
by entering command mode and typing a two character
mnemonic.

Control characters are generated by holding down the
CTRL key while pressing another key. On the Model 4, the
editor commands have also been mapped so that the CLEAR
key may be used in place of the CTRL key if desired.

Command mode is entered by typing CTRL z. Command mode
allows you to execute one command and then the editor
returns to compose mode. While in command mode, typing CTRL
Z before executing a command will also return the editor to
compose mode.

When creating a new file, the editor starts out with an
empty text buffer. The symbol *EOB will appear at the upper
left corner of the screen. Before entering text, one or
more blank lines must be inserted into the buffer. The
insert line command has been mapped to CTRL N. Each time
CTRL N is typed, a blank line will be inserted into the
buffer. Once the buffer contains lines, you may begin
entering text. The <enter> key will cause the cursor to go
to the beginning of the next line.

The editor defaults to overwrite mode. In overwrite mode,
the editor will write directly over the character under the
cursor. If there is text to the right of the cursor, the
text will be changed as you type. The other mode is insert
mode. There are two commands that cause the editor to enter
insert mode. When CTRL Vis typed, the editor temporarily
enters insert mode. When characters are typed, they are
inserted at the current cursor position. All characters to
the right of the cursor will shift one character to the
right each time a character is typed. When any editor
command is executed, such as <enter>, the editor goes back
into overwrite mode. The editor may be permanently placed
in insert mode by entering command mode and typing IM
<enter>. It may be placed back in overwrite mode by
entering command mode and typing IM <enter> once again.
This command toggles the editor from overwrite mode to
insert mode and vice versa.

- 13 -

When the editor is in permanent insert mode, the <enter>
key will insert carriage control. If the <enter> key is typed
at the end of a line of text, the editor will insert a blank
line following the current line and place the cursor at the
beginning of the blank line. If the <enter> key is typed
while in the middle of a line of text, the line will be
split with the characters to the right of the cursor being
placed on the inserted line. Insert mode is most useful
when creating new text. It prevents the need for inserting
blank lines in the text buffer before entering the text.
When the buffer is empty, the <enter> key may be typed to
insert one blank line and a new line is inserted
automatically each time <enter> is typed thereafter.

The most frequently used editor commands are the cursor
movement commands. These commands have been positionally
mapped on the left side of the keyboard. The basic cursor
movement commands are cursor right (RT), cursor left (LF),
cursor up (UP), and cursor down (DN). These commands are
mapped to the D,S,E, and X keys respectively. For example,
typing CTRL D will cause the cursor to move one character to
the right. Moving the cursor by word is a frequently used
command. The (FW) command will move the cursor forward one
word, while the (BW) command moves the cursor back one word.
These commands have been mapped to the F and A keys
respectively. The roll up command (RU) will scroll the text
toward the beginning of the text buffer while the roll down
command (RD) scrolls the text toward the end of the buffer.
The number of lines scrolled is defaulted to 3 lines less
than the size of the screen. These commands have been
mapped to the Rand C keys respectively. The following
diagram illustrates the positional mapping used for these
commands.

+---~--+ +------+
E R

UP RU
+------+ +------+

+------+ +------+ +------+ +------+
A S D F

BW LF RT FW
+------+ +------+ +------t +------+

+------+ +------+
X C

DN RD
+------+ +------+

- 14 -

As noted earlier, command mode (CM) is mapped to Zand
insert character mode (IC) is mapped to v. The delete
character command (DC), which deletes the character under
the cursor, is mapped to G. The delete word command CDW),
which deletes the current word under the cursor, is mapped
to T. The delete line command (DL), which deletes the
current line under the cursor, is mapped to Y. Since CTRL H
is typically associated with back space, it has been mapped
to perform the cursor left command, same as CTRL s.

In addition to the single control character mapping, some
co®nands have been mapped to a two character sequence. CTRL
Q is used as a prefix for the co®nands labeled inside
parentheses in the diagram below. After typing CTRL Q,
these commands may be executed by typing the single
character alone, or by typing CTRL <character>. For
example, you could type CTRL Q, R or CTRL Q, CTRL R.

The top of buffer command (TP) causes the screen window to
be moved to the top of the text buffer. The bottom of
buffer command (BB) causes the screen window to be moved to
the bottom of the text buffer. The beginning of line
command (BL) causes the cursor to move to the leftmost
column on the screen. The end of line command (EL) causes
the cursor to move one character past the rightmost
character on the line. The center line co®nand (CL) causes
the current line to be centered on the screen. The home
command (HM) causes the cursor to be positioned at the top
left corner of the screen. The editor maintains a buffer
for storing the last deleted line. The undelete line
command (UL) will insert the last deleted line at the
current cursor position.

+------+
Q

+------+ +------+ +------+ +------+
E R T Y

prefix UP RU(TP) DW DL(UL)
+------+ +------+ +------+ +------+ +------+

+------+ +------+ +------+ +------+ +------+ +------+
A S D F G H

BW LF{BL) RT(EL) FW(CL) DC LF(HM)
+------+ +------+ +------+ +------+ +------+ +------+

+------+ +------+ +------+ +------+
Z X C V

CM DN RD(BB) IC
+------+ +------+ +------+ +------+

- 15 -

Other frequently used commands have been mapped to the
right side of the keyboard. Since CTRL I generates the same
character as the tab key, it has been mapped to the tab
command (TB). Tabs are defaulted to 4 spaces. The back tab
command (BT) has also been mapped to I. Back tab is
executed when the CTRL Q prefix is used.(ie. CTRL Q, I or
CTRL Q, CTRL I).

The find next string command (FN) which searches for the
next occurrence of a string has been mapped to J. Before
executing FN, the find string command CFS), which defines a
string and then searches for it, should be used. The FS
command has been mapped to J with the Q prefix. The replace
next string command (RN), which replaces the next occurence
of one string with another, has been mapped to L. Before
executing RN, the replace string command (RS), which defines
a string to search for and another string to use as
replacement, should be used. The RS command has been mapped
to L with the Q prefix.

The split line command (SP), which causes the current line
to be split into two lines at the cursor position, has been
mapped too. The merge line command (MG), which causes the
line following the cursor line to be merged with the cursor
line, has been mapped to P. The delete to end of line
command (DE), which deletes the current line from the cursor
to the end of the line, has been mapped to K. The duplicate
line command (DU), which duplicates the line above the
cursor starting at the current cursor column, has been
mapped to u.

As noted earlier, the insert line command (IL) has been
mapped to N. CTRL M generates the same character as <enter>
and is therefore equivalent. The mnemonic used for <enter>
is (NL) which stands for next line.

+------+
Q

prefix
+------+

+------+ +---~--+ +------+ +------+
U I O P

DU TB(BT) SP MG
+------+ +------+ +------+ +------+

+------+ +------+ +------+
J K L

FN(FS) DE RN(RS)
+------+ +------+ +------+

+------+ +------+
N M

IL NL
+------+ +------+

- 16 -

There are several commands related to block operations.
These commands have been mapped mnemonically, rather than
positionally. (ie. the commands are mapped to keys that
correspond to the first letter of the command mnemonic)
The block commands must be prefixed by CTRL B. Simply
type CTRL B, CTRL <key> or CTRL B, <key> where <key> is
the key to which the specific command has been mapped.
For example, CTRL B, M executes the mark command.

Any block operation must have a defined block of text
to which the operation is applied. The mark command (MK)
places an invisible mark at the line containing the cursor.
Any block operation will be applied to the block of text
between the marked line and the line currently containing
the cursor. All block operations, except UR and LR occur
on line boundaries. Cie. the column position of the cursor
has no effect)

The three fundamental block operations are copy block (CB),
insert block (IB), and delete block (DB). The copy block
command copies the text within the marked region (ie. the text
between the marked line and the line containing the cursor)
to a temporary file. The insert block command inserts the
text in the temporary file into the text buffer prior to the
the line containing the cursor. The delete block command
deletes the text within the marked region.

The print block command (PR) prints the text in the marked
region. A line printer must be connected to use this command.
The fill command (FI) requires two parameters, the left and
right margins (column numbers). The fill command rearranges
the text within the marked region so that it fits within the
specified margins. The justify command (JF) also requires the
same two parameters. The justify command rearranges the text
on each line within the marked region so that the text aligns
at both margins. This will cause extra blanks to be placed
between words.

The upper case and lower case commands are the only block
commands that operate on character boundaries rather than
line boundaries. The upper case command (UR) makes all
characters within the marked region upper case characters.
The lower case command (LR) makes all cha~acters within the
marked region lower case characters.

There are two other very useful commands associated with
the marked line and the line containing the cursor. The
swap command (SW) swaps the marked line and the line containing
the cursor. The cursor line becomes the new marked line and
the cursor is positioned to the previously marked line.
The go to mark command (GM) causes the cursor to be positioned
to the marked line.

- 17 -

E. Editor Help Files

The files named with HLP extensions are editor help
files. These files contain information on editor commands.
There are help files on the following subjects: (HELP, KEY,
and CMD).

HELP displays information about the other two help files.
KEY shows how the commands are mapped to keys. CMD lists
all the editor commands in alphabetic order.

The help files may be viewed by typing CTRL Z to enter
command mode and then typing HELP <enter>. When prompted
for the subject, type in one of the above listed subjects
followed by the <enter> key. If the <enter> key is typed
without specifying·a subject, the HELP file will be
displayed. Be sure that all the help files are placed
on the system drive.

When viewing a help file, you may scroll downward
towards the end of the file by typing CTRL C. To scroll
back towards the beginning of the file, type CTRL R.
To resume the edit session, type CTRL z.

- 18 -

F. Sample Edit Session

The following steps show how a new file is created
using the editor. Then the editor is used to edit
the previously created file. Make sure the editor setup
file and help files are on the system drive before
beginning.

1) Type EDIT<enter>

2) When *EOB appears at the top left corner of the
screen, type CTRL N several times. Each time you
type CTRL N, a blank line is inserted into the text
buffer and the *EOB symbol moves down one line.

3) Now simply type in the text. When you type the <enter>
key the cursor will go to the beginning of the next line.
The cursor will not move beyond the *EOB symbol. If you
wish to type in more lines, use CTRL N to insert more
blank lines into the buffer.

4) Several commands may be used to move around in the text
to make changes or corrections. The previous section
explained the commands which are mapped to keys. These
commands are executed by holding down the CTRL key while
pressing one of the alphabetic keys. For example, CTRL
S moves the cursor left one character. Some of the
commands must be prefixed by CTRL Q. For example, typing
CTRL Q and then the S character will cause the cursor to
go to the beginning of the current line.

5) If you forget how the commands are mapped to keys, type
• CTRL z. Angle brackets will appear at the bottom left

corner of the screen. Type HELP KEY <enter>. The screen
will display help information about how the commands are
mapped to keys. Type CTRL C to move forward in the help
file. Type CTRL R to move backward. Type CTRL Z to
resume the edit session.

6) Once you have finished entering the text, type CTRL Z to
enter command mode. Type EXIT <enter>. You will be
prompted with <EXIT>FILE:. Type in a valid file name.
Drive numbers may be used as part of the file name.
You will then be prompted with <EXIT>BACKUP? Simply press
the <enter> key. Your file will be saved and the editor
will exit back to the operating system.

- 19 -

7) If you wish to modify the file, type EDIT followed by the
filename used in step 6. The editor will load in the
first 100 lines of the file. If fewer lines than this
were in the file, the whole file will be loaded.
Use the editor commands to move around in the text, making
modifications. If not all lines were loaded into the
text buffer, type CTRL z to enter command mode and type
APPEND 100 <enter>. One hundred more lines will be loaded
from the file into the text buffer. If the buffer becomes
full, (indicated by OUT OF MEMORY message at the bottom
of the screen) type CTRL Z to enter command mode. Type
WRITE 100 <enter> and the first 100 lines in the buffer
will be written to the editor work file. The lines written
may not be edited again until the current edit session is
terminated. After freeing buffer space with the WRITE
command, more lines may be appended into the text buffer.
When finished making changes, type CTRL z to enter command
mode.

8) If you wish to save your changes type EXIT <enter>.
You may simply press the <enter> key to answer the following
two prompts, <EXIT>FILE: and <EXIT>BACKUP?. The editor will
will save your changes to the file specifed in step 7.
However, before doing so, it will rename the original
file created in step 6 to become a backup file. The same
prefix of the file name is used with the extension BAK
to represent that it is a backup file. The editor by
default creates this backup file. To prevent its creation,
you must type N <enter> to the <EXIT>BACKUP? prompt.

9) If you wish not to save your changes, type QUIT <enter>.
When prompted with <QUIT>REALLY?, type Y <enter>. The
editor will exit to the operating system and the file
created in step 6 will be left unchanged.

- 20 -

)

(

G. Swapping Disks During an Edit Session
==

Sometime during an edit session, you may need to access
files which are not on any of the disks currently in the
drives. It is possible to swap disks during an edit
session for such situations. When swapping disks, the
swap disk editor command (SD) must be executed each time
the disks are swapped. Type CTRL Z to enter command mode
and then type SD <enter>.

When the editor is executed and has finished loading
the setup file, the EDIT command file and the setup file are
no longer needed during an edit session. The other files
involved include the original file being edited and the
editor work files. These files may be swapped as long as
the following rules are followed.

1) The original file must be swapped back before an APPEND
operation.

2) The main work file must be swapped back before a WRITE
operation.

3) The block command work file must be swapped back before
a block operation.

4) The original file and main work file must be swapped
back before an EXIT or SAVE operation.

- 21 -

EDITOR COMMANDS

The previous chapter explained only those commands which
are internally mapped to the keyboard. The mapped commands
may be executed by typing the appropriate control
characters. This chapter explains all the editor commands
except for a few special setup file commands. All these
commands may be executed from command mode.

CTRL z causes the editor to enter command mode. While in
command mode, CTRL H may be used to backspace and correct
typing errors. Commands are executed when the <enter> key
is pressed. CTRL z may be used prior to pressing the
<enter> key to abort command mode and reenter compose mode.

A. Command Parameters

All commands, some of which require parameters, have an
associated two character mnemonic. In addition, the
commands which require parameters have command names which
may alternatively be used in place of the mnemonic. For
example, the find string command requires a string
parameter. The find string command may be executed from
command mode by typing either FS or FIND, followed by the
<enter> key. Abbreviations of the long form names are also
accepted. (eg. FIN will work)

When executing commands which require parameters, you
may specify the parameters after the command name or you may
simply type the command name without specifying the
parameters. If the parameters are not specified, the editor
will prompt for the required parameters. This is the case
for key mapped commands which require parameters (eg. the
FIND string command). The prompt will contain the long form
of the command name inside angle brackets, followed by the
parameter being requested. For example, typing FS <enter>
while in command mode will result in the prompt
<FIND>STRING:. You must then type in the string.

There are three types of parameters that are used for
commands. Integer parameters are required for commands such
as FILL (FI) and JUSTIFY (JF). With these commands, you
must specify the columns to use as the left and right
margins. For example, FILL 10 70 and JUSTIFY 5 75 might be
used. When specifying integer parameters, blanks must be
used to separate the individual parameters. Some commands
have parameters which require a yes/no answer. These may be
answered by typing YES or NO or by simply typing Y or N.
Both upper and lower case are accepted. The third type of
parameter is a string. There are multiple ways of
specifying string parameters. They may be quoted using either
single or double quotes, or they may be unquoted. For
example, either FIND 'ABC' or FIND "ABC" or FIND ABC could
be used to locate the string ABC.

- 22 -

(

When specifying multiple string parameters on the
command line, all but the last string parameter must
be quoted. If the editor is expecting a string
parameter and the next parameter is a non-quoted
string, it will treat all characters to the end of
the command line as part of the string. This may or
may not be what was intended. For example, the replace
string command takes two string parameters, a string
to search for and one to use as replacement. This
command could be executed in the following ways.

(1) RS 'ABC' BCD or (2) RS 'ABC' 'BCD' or (3) RS ABC BCD

Examples 1 and 2 are equivalent and would execute as
intended. However, in example 3, the editor would use
ABC BCD as a single string and then prompt for the next
string.

In some circumstances, the quoted string is different
from the unquoted string. The editor uses all characters in
an unquoted string as they appear. However, it gives
special meaning to certain characters in a quoted string.
The# symbol is used to signify that a two character hex
digit follows. The editor converts such 3 character
sequences into a single character. For example, '#41' is
converted to the single character A. The= symbol is used
to signify that a two character command mnemonic follows.
The editor converts this 3 character sequence into an
internal command code. For example, '=RS' is converted to
the internal editor code for the replace string command.
The A symbol is used to represent the CTRL key. When this
symbol is encountered, the editor converts the next
printable character into the corresponding non-printable
control character. For example, •-o• is converted to the
single character, CTRL Q. If one of these special symbols
is needed as a character in a quoted string, the symbol
must appear twice. For example, '==' is equivalent to=.
The sequence 'AA' however represents CTRL A. {use #SE)
Representation of the quote character itself within a
string is handled in the same manner. For example, the
string'''' represents a single quote character.

In certain situations, such as defining a macro command
(discussed in the following chapter), it may be necessary
to use a quoted string within another quoted string. The
editor accepts both single and double quotes as string
delimiters. The case where you need a string within
a string may be handled by using double quotes to delimit
the outermost string, and single quotes to delimit the
inner strings. (eg. "RS 'cba' 'abc'")

- 23 -

B •. Editor State Commands

The commands listed in this section allow specific
editor states to be set. Some of the commands require
parameters while others do not. The commands which
require no parameters act as switches that toggle a
specific editor characteristic between two states.
The commands requiring parameters are used to define
values for the editor to use when that specific function
is performed.

B.l No Parameters

Mnemonic

AI

CM

DT

IC

IM

Command Function

Auto Indent - Turns auto indent on
and off. The auto indent feature
effects the positioning of the cursor
when the <enter> key is pressed. If
auto indent is off, the cursor is
positioned at the left edge of the
screen. If auto indent is on, the
the cursor is positioned over the first
non-blank character on the next line.
If the line contains all blanks, the cursor
is positioned under the first non-blank
character on the line above.
Default: off

Command Mode - Toggles the editor
between command mode and compose mode.
Default: Compose mode

Delete Tabs - Deletes all tab stops.
Default: tab stops are set every 4 columns.

Insert Character Mode - Used in overwrite
mode to temporarily cause the editor
to insert subsequent printable characters.
Overwrite mode is reentered when a non­
printable character is typed. Default: off

Insert Mode - Toggles the editor between
overwrite mode and insert mode.
Default: Overwrite mode

- 24 -

Mnemonic

LN

TF

(

Command Function

Lines - Toggles editor line numbering
on and off. If line numbering is
on, all lines of text in the buffer
will be preceded by a line number.
The line numbering is relative to the
beginning of the file with the first
line being number 1. The line numbers
are not actually a part of the file.
The editor simply maintains the
line numbers internally and displays
them for the text in the buffer.
Default: off

Tabify - Toggles blank compression on
and off. This effects whether or not
the editor outputs the tab character
when the EX, XT, PR, or WR commands
are executed. If compression is on,
each sequence of 8 blanks in the editor
buffer is converted to a single tab
character before being written out.
If compression is off, blanks are not
converted to tab characters.
With compression on, less space is
required to store the file. However,
some devices, such as printers, do not
understand the tab character.
Default: On

- 25 -

B.2 Parameters

Mnemonic

RL

TS

Command Function

Roll - Sets the number of lines scrolled
when the roll up (RU) or roll down (RD)
commands are executed.
Command Name: ROLL
Number of Parameters: 1
Parameter Type: integer
Example: <>ROLL 12
Default: (screen height) - (3)

Tab Set - Defines the tab stops in
either of two ways. The first way is
to specify a single integer parameter.
The editor will clear all current tab
stops and set new stops beginning at
column 1, with tab stops set every
specified number of spaces.
The second way is to specify the=
symbol followed by a list of columns
to be used as tab stops. Current
tab stops are not deleted when this
form of the command is used. The list
of tab stops must be separated by commas.
Command Name: TABS
Number of Parameters: method 1 --> 1

method 2 --> n
Parameter Type: integer
Example method 1:

<>TABS 10
Example method 2:

(>TABS= l,11,21,31,41,51,61,71
The above examples are equivalent.
Default: <>TABS 4

- 26 -

c. Cursor Positioning Commands
------ ------------------------

The cursor positioning commands are commands which
when executed result in the cursors position being
changed. These commands cause the cursor to move by
character, word, or line.

C.l No Parameters

Mnemonic

BB

BL

BT

BW

DN

EL

FW

GM

.. HM

LF

NL

RD

RT

Command Functon

Bottom of Buffer - move cursor to the
bottom of the text buffer.

Beginning of Line - move cursor to the
beginning of the line.

Back Tab - move the cursor backward by
one tab stop.

BackWord - move the cursor backward by
one word.

Down - move the cursor down one line.

End of Line - move the cursor to the end
of the line.

ForWord - move the cursor forward by one
word.

Go to Mark - move the cursor to the marked
line. {used in conjuction with the mark
(MK) block command)

Home - move the cursor to the top left corner
of the screen.

Left - move the cursor left one character.

Next Line - In overwrite mode, move the
cursor to the beginning of the next line.
In insert mode, insert carriage return at
the current cursor position.

Roll Down - scroll the text buffer window
toward the end of the buffer.

Right - move the cursor right one character.

- 27 -

Mnemonic

RU

SW

TB

TP

UP

C.2 Parameters

HS

MI

PL

Command Function

Roll Up - scroll the text buffer window
toward the beginning of the buffer.

Swap - swap the cursor line and the marked
line. Moves the cursor to last line
marked by the mark (MK) command.

Tab - In overwrite mode, moves the cursor
right to the next tab stop. In insert
mode, moves the character under the cursor
to the next tab stop by inserting blanks.

Top - moves the cursor to the top of the
text buffer.

Up - moves the cursor up one line.

Horizontal Scroll - scrolls the screen
horizontally so that the specified
column is at the edge of the screen.
(For terminals with less than 80 column
wide screens only)
Command Name: HSCROLL
Number of Parameters: 1
Parameter Type: integer
Example: <>HSCROLL 10

Minus - move the cursor towards the top
of the text buffer by a specified number
of lines.
Command Name: -
Number of Parameters: 1
Parameter Type: integer
Example: <>- 49

Plus - move the cursor towards the bottom
of the text buffer by a specified number
of lines.
Command Name:+
Number of Parameters: 1
Parameter Type: integer
Example:<>+ 35

- 28 -

Mnemonic

PO

SC

SL

SR

Command Function

Position - move the cursor to the specified
row and column on the screen. Top left corner
of screen is row O, column O.
Command Name: POSITION
Number of Parameters: 2
Parameter Type: integer, integer
Example: <>POSITION 5 10

Set Column - move the cursor to the specified
screen column.
Command Name: COL
Number of Parameters: 1
Parameter Type: integer
Example: <>COL 13

Show Line - positions the display so
that the specified line is under the
cursor. If the line is not currently in
the text buffer, the editor automatically
pages the original file into the buffer
until the specified line has been loaded.
If the specified line has already been
written to the work file, then the editor
will display the first line in the
buffer at the top of the screen.
Command Name: SHOWLINE
Number of Parameters: 1
Parameter Type: integer
Example: <>SHOWLINE 1000

Set Row - moves the cursor to the specified
screen row.
Command Name: ROW
Number of Parameters: 1
Parameter Type: integer
Example: <>ROW 9

- 29 -

D. Character Commands
======================

The character commands operate on a single character
or a word.

Mnemonic

DC

DW

QU

RB

Command Function

Delete Character - Deletes the character
under the cursor.

Delete Word - Deletes the word under
the cursor. If the cursor is on a non­
blank character, then all characters in
both directions from the cursor to the
first blank character are deleted. If
the cursor is on a blank character, then
all consecutive blank characters from the
cursor to the right are deleted.

Quote Character - After execution, the
next character typed will be entered into
the text at the current cursor position.
This command may be used to insert non­
printable control characters into the
text buffer.

caution: Some terminals treat certain
non-printable characters as
commands. If a non-printable
character is recognized as a
command by the terminal, the
editor will not be able to display
the text properly. Never insert
a CNTL Z into the text. The editor
uses CNTL z for end of file.

Rub Out - Deletes the character preceding
the cursor.

- 30 -

E. Line Commands

The line commands operate on a either one or two
lines at a time.

Mnemonic

CL

DE

DL

DU

IL

MG

SP

UL

Command Function

Center Line - Centers the current
cursor line on the screen.

Delete to End of Line - delete all
characters from the cursor to the end
of the line.

Delete Line - Delete the entire cursor
line.

Duplicate Line - Duplicates the line
above the cursor onto the cursor line.
Only the characters from the current
cursor position to the end of the line
are duplicated.

Insert Line - Inserts a blank line at
the current cursor position.

Merge Line - Merges the line following
the cursor to the end of the cursor
line. Only the amount of text that
will fit an 80 character line is merged.

Split Line - Splits the current line
at the cursor by inserting a blank line
after the cursor line and placing the
text from the cursor to the end of the
line on the blank line.

Undelete Line - Restores the last deleted
line at the current cursor position.
The editor maintains a line buffer which
is initially filled with blanks. Each
time a line is deleted (DL command), the
deleted line is saved in this buffer.
This command inserts the line from the
buffer prior to the current cursor position.

- 31 -

F. String Commands
=========:======:==

The string commands operate on specified character
sequences. A character sequence cannot span a line
boundary. The case of a character in the sequence is
significant.

F.l No Parameters

Mnemonic

FN

RN

F.2 Parameters

FS

Command Function

Find Next - Find the next occurence of
the "find string" in the text buffer.
The "find string" is defined by the FS
command. The search for the "find string"
begins one character right of the cursor and
continues till the string is found or the
end of the text buffer is encountered.

Replace Next - Find the next occurrence
of the "find string" and replace it with
the "replace string". The "find string"
and "replace string" are defined by the
RS command. The search for the "find
string" begins one character right of the
cursor and continues till the string is
found or the end of the text buffer is
encountered. If the "find string" is
found, it is replaced by the "replace
string".

Find String - Search from the current
cursor position towards the end of the
text buffer for the first occurrence of
the specified string of characters. The
single string parameter defines the
"find string" buffer.
Command Name: FIND
Number of Parameters: 1
Parameter Type: string
Example: <>FIND end

<>FIND '#65#6E#64'
The examples are equivalent.

- 32 -

Mnemonic

QS

RG

RS

Command Function

Quote String - Enter the specified string
into the text buffer at the current cursor
position.
Command Name: QUOTE
Number of Parameters: 1
Parameter Type: string
Example: <>QUOTE abc

<>QUOTE '#61#62#63'
The examples are equivalent.

Replace Global - Replace all occurrences
of the "find string" with the "replace
string". The search starts at the current
cursor position and continues to the end
of the text buffer. The two string
parameters define the "find string" and
"replace string" buffers.
Command Name: REPGLOB
Number of Parameters: 2
Parameter Type: string
Example: <>REPGLOB 'recieve' 'receive'

Replace String - Replace the first
occurrence of the "find string" with the
"replace string". The search starts
at the current cursor position and
continues until the "find string" is
found or the end of the text buffer is
encountered. The two string parameters
define the "find string" and "replace
string" buffers.
Command Name: REPLACE
Number of Parameters: 2
Parameter Type: string
Example: <>REPLACE '132' '123'

- 33 -

G. Block Commands

The block commands operate on a block of text at a
time. A block is a group of consecutive lines of text.
All the block commands except for UR and LR operate
on line boundaries. (ie. the column position of the
cursor is not important). A block region must be
marked (MK) before any block operations may be performed.
All block operations apply to the text between the
marked line and the cursor line (inclusive).
Some of the block commands use a temporary work file
for buffer storage. The editor automatically creates
this work file. The command explanations below
refer to "block buffer". The temporary work file is
used as the block buffer.

G.l No Parameters

Mnemonic

CB

DB

IB

LR

MK

PR

UR

Command Function

Copy Block - Copies the text between
the marked line and the cursor line
to the block buffer.

Delete Block - Deletes the text between
the marked line and the cursor line.

Insert Block - Inserts the text from the
block buffer into the text buffer just
prior to the cursor line.

Lower Case - Converts all characters
between the marked character and the
character under the cursor to lower case.

Mark - Places an invisible mark at the
current cursor position. This command
is used to define one block boundary.
The other boundary is defined by the
cursor position.

Print - Print the text between the marked
line and the cursor line. This command
requires that a printer be connected to
the computer.

Upper Case - Converts all characters between
the marked character and the character under
the cursor to upper case.

- 34 -

G.2 Parameters

Mnemonic

FI

JF

XT

Command Function

Fill - Fills the marked block of
text such that all text within the
block fits inside the specified left
and right margins.
Command Name: FILL
Number of Parameters: 2
Parameter Type: integer
Example: FILL 10 70

Justify - Justifies the marked block
of text such that each line in the
block aligns with the other lines at
both specified left and right margins.
Command Name: JUSTIFY
Number of Parameters: 2
Parameter Type: integer
Example: JUSTIFY 15 65

Extract - Write the text within the
marked block to the specified file.
The file may be any legal file
name, including drive specifier.
Command Name: EXTRACT
Number of Parameters: 1
Parameter Type: string
Example: EXTRACT datafile

- 35 -

H. File Commands
------------- ---

The file commands are disk related commands. Most
of the commands listed in this section result in text
being written to or read from a disk file. All the
file commands require parameters. The file parameters
may be specified using any valid system file name,
including drive specifier and user number if applicable.
The two file commands APPEND (AP) and WRITE (WR) must
be used when editing files larger than the text buf r.

For some commands, the editor uses a default file name
if the file name prompt is answered simply by typing the
<enter> key. If the editor is executed with a file
specified on the command line, this file becomes the default
file. Another way of defining a default file is to execute
the editor without specifying a file on the command line and
then using the APPEND (AP) command to load in a file. The
fite specified in the append becomes the default file. When
the EXIT (EX) or SAVE (SV) commands are executed, the file
prompts may be answered by simply typing <enter>. This will
cause the default file to be used.

Mnemonic

AP

Command Function

Append - Appends a specified number
of lines to the end of the text buffer.
A second file parameter is optional. If
no file is specified, then the editor
uses the default file if it exists.
Otherwise, the editor prompts for the
file parameter. Multiple files may
be appended using this command. Any
appended file must be completely loaded
(ie. EOF has been reached) before
another file may be appended. When
an exit is performed, the last file
opened by an append will be completely
written to the editor work file, even
if not all the file was loaded into the
text buffer. An exit without an explicit
file specification will cause the editor
to use the first appended file as the
default file.
Command Name: APPEND
Number Parameters: 2
Parameter Type: integer, <string>
Example: <>APPEND 100

<>APPEND 50 filex

- 36 -

Mnemonic

DI

EX

E/

(

Command Function

Directory - Displays the file
directory of the specified drive.
If no drive is specified, the default
drive is used. The message - DONE -
will appear at the bottom of the screen
when all files have been listed. Typing
any key will cause the editor to resume.
Command Name: DIR
Number of Parameters: 1
Parameter Type: <string>
Example: <>DIR

Exit - Causes the editor to perform
an exit, returning control to the
operating system. The current file being
edited will be saved in the specified
file or in the default file if no file is
specified. The editor then prompts as to
whether or not to create a backup. By
default, pressing the <enter> key, a
backup will be saved. If the file is a
new file, no backup file is created. If
the edited file already existed, then it
is renamed unchanged as the backup. The
backup file then reflects the file
contents just prior to the last edit.
The backup file is named by changing the
extension of the original file to BAK.
Command Name: EXIT
Number of Parameters: 2
Parameter Type: string, Y/N
Example: <>EXIT 'FILEA' Y

Exit - Identical to EX above except
that the exit returns back to the editor
rather than the operating system. After
the exit has finished, the text buffer is
cleared and another file may be edited
by using the APPEND command CAP).
Command Name: EXIT/
(see EX)

- 37 -

Mnemonic

HP

IF

QT

Q/

SD

Command Function

Help - (see general commands)

Insert File - Insert a file or portion
of a file into the text buffer just prior
to the cursor line. The line number in
the file where the insertion will start,
followed by the number of lines to insert
must be specified. The first line of a
file is line number 1. If the number of
lines specified is greater than the length
of the file, then all lines from the
starting line to the end of the file will
be inserted.
Command Name: INSFILE
Number of Parameters: 3
Parameter Type: string, integer, integer
Example: <>INSFILE 'SEGMENT' 1 45

Quit - Causes the editor to exit to the
operating system without saving the file.
All editing is lost. This command provides
a prompt to allow the user to abort the
operation and reenter the editor.
Command Name: QUIT
Number of Parameters: 1
Parameter Type: Y/N
Example: <> QUIT Y

Quit - Identical to QT above, except
rather than exit to the operating system,
the text buffer is cleared and you may
continue editting.
Command Name: QUIT/
Number of. Parameters: 1
Parameter Type: Y/N
Example: <>QUIT/ Y

Swap Disk - This command tells the editor
that you have swapped disks. It allows
you to remove a disk and insert another
during an edit session. Each time a disk
is swapped, this command must be executed.
If this command has been executed, the
editor will prompt with DISK RESTORED?
when an exit is attempted. If you type Y,
then the exit is continued. Otherwise,
the edit session is resumed.
Command Name: SWAPD
Number of Parameters: none
Example: <>SWAPD

- 38 -

(

Mnemonic

SF

Command Function

Show File - This command allows a
specified file to be displayed during
an edit session. When the command is
executed, the specified file is opened
and a screenfull of lines is displayed~
the top line on the screen displaying
the first line in the file.
Command Name: SHOWFILE
Number of Parameters: 1
Parameter Type: string
Example: <>SHOWFILE FILEY

Several commands are available to view the file when
the SF command is executed. Three of these commands are
standard editor commands which must be mapped to keys in
order to execute them. Three others are special commands
used only while in SHOWFILE.

Standard Editor Commands

Mnemonic Key

RU CTRL R

RD CTRL C

CM CTRL Z

<linenumber>

+<lines>

-<lines>

Scrolls one screenfull toward the
beginning of the file.

Scrolls one screenfull toward the end
of the file.

Terminates SHOWFILE and resumes editing.

Special SHOWFILE Commands

By simply typing an integer line number,
followed by the <enter> key, the specified
line will be displayed on the top line of
the screen.

By typing the+ symbol followed by an
integer number, the line displayed at the
top of the screen will be the current line
number added with the specified integer.

By typing the - symbol followed by an
integer number, the line displayed at the
top of the screen will be the current line
number subtracted by the specified integer.

- 39 -

Mnemonic

sv

WR

XT

Command Function

Save File - This command saves the
current edit session to the specified
file and then resumes the edit. It
is identical to the EXIT (EX) command
except that rather than exit to the
operating system, it resumes the current
edit session. This command may be used
to periodically save the text being
edited. The second prompt asks whether
or not to create a backup.
Command Name: SAVE
Number of Parameters: 2
Parameter Type: string, Y/N
Example: <>SAVE 'AFILE' Y

Write - This command writes a specified
number of lines to the main editor work
file. The specified number of lines are
written starting with the first line in
the text buffer. The lines are appended
to the end of the main editor work file.
All lines written are then deleted from
the text buffer. This command may be used
in conjunction with the append command (AP)
to edit files larger than the text buffer.
Command Name: WRITE
Number of Parameters: 1
Parameter Type: integer
Example: <>WRITE 100

Extract - (see block commands)

- 40 -

' \

I. General Commands
====================
I.l No parameters

Mnemonic

CT

MM

RF

ST

I.2 Parameters

HP

Command Function

Clear Tab - Clears the tab stop, if one
is set, at the current cursor position.

Memory - Displays at the bottom of the
screen, the amount of space remaining in
the text buffer. The first number
displayed is the number of characters
which may be stored in the remaining
space. The second number shows the amount
of free space as a percentage of the total
buf r space.

Refresh - Causes the editor to redisplay
the screen. This may be useful to determine
whether or not non-printable characters are
in the buffer. If the display behaves
improperly, then the buffer contains a
non-printable character which the terminal
recognizes as a command.

Set Tab - Sets a tab stop at the current
cursor position.

Help - The help command displays the specified
file. The only difference between the
HELP (HP) command and the SHOWFILE (SF)
command is that the help command appends
the extension HLP to the specified file.
The same commands may be used to view the
file. The supplied files that have the
extension HLP are editor help files which
describe the editor commands. The
parameter for the help command should
specify the prefix for these file names.
(ie. the HLP extension should not be
specified.) The help file named KEY
contains information showing how commands
are mapped to keys. If the standard
mapping is altered, a help file may be
created which reflects the new mapping.
Command Name: HELP
Number of Parameters: 1
Parameter Type: string
Example: <>HELP KEY

- 41 -

J. The Edit Command

The editor has a command that allows a second file to
be edited without terminating the current edit session.
When the editor is executed from the operating system it
starts out at level 1. This is the only level ever used
unless the EDIT (ED) command is executed. This command
causes the editor to go to level 2. When level 2 is
entered, the editor clears the text buffer and essentially
begins a new edit session. The editor state remains
unchanged except for the fact that a new file is being
edited. The level 1 edit session is preserved with its
current state at the time level 2 is entered. When level
2 is terminated by either the QUIT (QT) or EXIT (EX)
commands, level 1 is reentered in its preserved state.
The two levels are· independent. (ie. the level 2 edit
does not effect anything in the level 1 edit or vice
versa).

Note: a maximum of 2 levels is allowed.

Mnemonic

ED

Command Function

Edit - Clears the text buffer and starts
a new edit. The first parameter is for
the file to edit. If a file is specified,
the first 100 lines are loaded into the
text buffer. If the <enter> key is typed
for the file prompt, the level two edit
will start with an empty buffer. The next
four parameters define an edit window. They
define the top row, bottom row, left column,
and right column of the screen. The editor
will use only this window to display text.
The rest of the screen will be left
undisturbed. This is a useful feature if
you need to view a few lines of text from
the level 1 edit while editing in level 2.
If the specified left and right column
parameters define a window too narrow to
display all the text horizontally, the
horizontal scroll command {HS) may be used
to scroll the text in and out of the window.
The window parameter prompts may be answered
by typing the <enter> key. When the <enter>
key is typed, the default value used is the
screen boundary.
Command Name: EDIT
Number of Parameters: 5
Parameter Type: string, integer •••
Example: <>EDIT 1 filez' 1 10 1 50

- 42 -

CHANGING EDITOR CHARACTERISTICS

The editor has many commands which change specific
characteristics of the editor. This chapter explains
the two most powerful commands for changing the editor
characteristics. One command allows you to change the
way the keyboard is mapped to the editor commands. The
other allows you to define more powerful editor commands.
A single command may be constructed from the set of built
in commands. This is called a macro command because it
combines more than one of the built in commands to form
a single more powerful command.

A. Translating Keyboard Characters to Commands

The editor is supplied such that selected commands
are internally mapped to the keyboard. It is possible to
change this mapping partially or completely to suit personal
preference. The TRANS (TR) command will allow you to map
any keyboard generated character sequence to any editor
mnemonic. The character sequence consists of one or more
ascii characters, printable or non-printable. It is best to
start the sequence with a non-printable character (eg. the
ESC character or a control character). If a printable
character starts the sequence, you will no longer be able to
enter that character as text. The editor treats all character
sequences defined by the TRANS command as a single entity.
As each character is received from the keyboard, it is checked
to see if it begins a sequence mapped to an editor command.

•If not, then the character is entered as text if it is
printable or discarded if it is non-printable. If the character
does begin a defined sequence, the appropriate command is
executed for the case of a single character sequence.
For multiple character sequences, subsequent characters are
used to determine the appropriate command. (ie. they are not
entered as text) Only after the sequence traces to a specific
command or an invalid sequence does the editor revert back to
entering printable characters as text.

The TRANS command takes two string parameters. The first
parameter is the character sequence. The second parameter
is the editor command to which the sequence is mapped.

- 43 -

There are three special symbols which may be used in quoted
strings. (#, A, and=). The editor gives special meaning
to these symbols. If the symbol itself is to be a character
in the string, it must appear twice. For example, '##'
would be the single character#.

Any ascii character may be represented in a quoted string.
The non-printable characters may be represented by a three
character sequence beginning with the# symbol. The two
characters following the symbol must be a valid hexadecimal
value. The ascii chart shows the hexadecimal value for each
character in the ascii character set.

The A symbol is used to represent the control key, CTRL.
For example, CTRL Q may be represented in a string as 'AQ'.
This is equivalent to the string '#11' since CTRL Q has the
ascii value of hexadecimal 11. As you can see, 'AQ' is a
little more readable than '#11'. The character sequence
CTRL Q, f, Z is represented as 'AQfZ'. The sequence CTRL w,
CTRL Xis represented as 'AWAX'. The escape character ESC
may be represented as 'A['.

The= symbol is used to signify that a two character
editor command mnemonic follows. For example, the string
'=UP' represents the cursor up command CUP). The string
'=FS' represents the find string command (FS).

Mnemonic

TR

Command Function

Translate - Translates the specified
character sequence to the specified
editor command. The character sequence
is the first parameter. It may consist
of any number of valid ascii characters.
The second parameter must be a built in
editor command mnemonic.
Command Name: TRANS
Number of Parameters: 2
Parameter Type: string, string
Example: <>TRANS 'AR' '=RU'

<>TRANS fAQR' '=TP'
<>TRANS fAQAR' '=TP'

While in command mode, rather than type A followed by
a character, the actual control character may be typed.
The editor will echo the two character representation.
For example, if CTRL R is typed, the editor will echo
AR to the command line.

- 44 -

(

B. Defining Macro Commands

It is possible to map a keyboard generated character
sequence to more than one editor command. The DEFINE
(DM) command is similar to the TRANS command in that
it maps a keyboard generated character sequence to an
editor command. However, the DM command will allow you
to specify more than just a single editor mnemonic.

The second parameter of the DM command is a string
which may contain command mnemonics (including parameters if
required), command mapped character sequences, or a sequence
of printable characters. The editor uses this string as
input just as it normally does with input from the keyboard.
Essentially, anything that may done manually from the
keyboard may be defined in this string and executed
automatically.

A simple illustration of the use of the define
command is to map a key to a word which is often typed. The
following example maps the word Program to the key sequence
ESC P (ie. the escape key followed by upper case P).
Then typing ESC Pis equivalent to typing the word Program.

<>DEFINE 'A[P' 'Program'

Commands may be specified in several ways. One way is
to specify the command mnemonic preceded by the= symbol.
If the command requires parameters, the parameters should
immediately follow the mnemonic. Each parameter must be
followed by the NL command as a parameter terminator •. The
NL command is mapped to the <enter> key which is equivalent
to CTRL M. Therefore, either AM or =NL may be used as a
parameter terminator. The following macro will move the
cursor forward by sentence. The example maps the macro
to ESC S. When executed, the find string command positions
the cursor over the next period in the text. Then the right
cursor command is used to handle cases where the period is
the last character on a line. The forward word command then
causes the cursor to be positioned at the beginning of the
next sentence.

<>DEFINE 'A[S' '=FS.-M=RT=FW'

The above command is executed from the editor compose mode.
First the =FS command is executed which causes the editor to
prompt for the <FIND>STRING: parameter. The editor then uses
the sequence of characters up to the terminator as the find
string parameter. At this point, the find string command is
executed. When finished, the next input received is the cursor
right and forward word commands. After the forward word command
is executed, control returns to the keyboard.

- 45 -

The following example illustrates another way of defining
the macro to move forward by sentence. First the editor is
switched to command mode. The find string command follows,
terminated by the next line command. Note that once in
command mode, the command syntax is identical to that when
executing manually from command mode. When the find string
command finishes execution, the editor returns to compose
mode. Then the cursor right and forward word commands are
executed. Here, the RT and FW commands are specified as
the control characters to which they are mapped rather than
by the mnemonics.

Any command mapped character sequence may be used in
defining a macro. This means that one macro may reference
another defined macro. Since strings may not cross line
boundaries, this provides a way of building macros longer
than one line. The following example illustrates a macro
definition which refers to another defined macro.

Suppose you wish to define a macro to capitalize the first
character of the current word under the cursor. First, define
a macro which positions the cursor to the beginning of the
current word. The back word command will do this. However,
if the cursor is already on the first character of a word, the
back word command will cause the cursor to be positioned at
the beginning of the previous word. To prevent this from
occurring, position the cursor right one character before
performing the back word command.

<>DEFINE 'A[$' '=RT=BW'

Now you can define a macro which capitalizes the character
under the cursor. The UR block command may be used to do
this. First, the mark command is used to place an invisible
mark at the cursor position. Since the cursor is at the same
position as the mark, only the character under the cursor will
be capitalized.

<>DEFINE 'A[@' '=MK=UR'

A macro can now be defined which uses the above defined
macros. CTRL W can then be used to capitalize the current
word under the cursor.

This particular macro is short enough to have been defined
as a single macro. However, it does illustrate how one macro
may use another defined macro.

- 46 -

The maximum number of macros that may be defined at
any one time is 64. If you wish to change the macro defined
to a particular character sequence, you may simply use the
DM command to define a new macro to that particular
sequence. However, when this is done, the memory required
to store the previously mapped macro will not be recovered.
To recover the memory used by the old macro, the undefine
macro command (UM) may be used. This command will cause
the macro defined by the specified character sequence to
be deleted.

Mnemonic

DM

UM

Command Function

Define Macro - Maps keyboard generated
character sequences to editor commands,
other command mapped sequences, printable
text, or any combination of the above.
Command Name: DEFINE
Number of Parameters: 2
Parameter Type: string, string
Example: <>DEFINE 'AW' 'this is a macro'

Undefine Macro - Recovers the space used
by a macro definition. The macro mapped
to the specified character sequence is
deleted.
Command Name: UNDEFINE
Number of Parameters: 1
Parameter Type: string
Example: <>UNDEFINE 'AW'

- 47 -

J .

I

EDITOR SETUP FILES

The editor must use a setup file at a minimum to
determine the terminal characteristics. In addition,
the setup file may be used to customize the editor by
setting specific editor states, mapping commands to
keys, and defining new commands. Several setup files
may be created to allow the editor to be configured
differently, depending on the type of editing being
performed. Then simply specify the appropriate setup
file when the editor is executed. You might use one
setup file for programming and another one for word
processing. If you use more than one programming
language, you might have a separate setup file for
each language •

. There are some normal editor commands which are allowed
in setup files and some special commands which can be used
only in setup files. Among the special commands are four
terminal defining commands (HEIGHT, WIDTH, TERMINAL, and
CURSOR). These are the commands which the SETEDI 1r uti ti ty
outputs to a setup file to define terminal characteristics.
When creating a setup file, you may exclude the terminal
characteristics. After creating a text format setup file
using the editor, the SETEDIT utility may be used to read
it, merge it with the terminal information, and then write
the combined information to a binary and/or text format
file. The terminal information may be merged by selecting
the proper terminal from the menu or by reading a previously
created setup file containing the terminal information.

Remember, the editor requires binary setup files.
However, the text format setup file is useful if you wish
to make modifications.

The commands in setup files are limited to one command
per line. The semicolon; may be used as a comment specifier.
If a semicolon is encountered in a setup file, the remaining
text on that line is treated'as a comment. This of course
does not apply to semicolons which appear inside quoted
strings. The commands may be placed in any order within
the setup file. The only requirement is that a command mapped
character sequence must be defined before it is referenced
by the START or DEFINE commands.

- 48 -

)

A. Normal Commands

This section lists the normal editor commands which
may be used in a setup file. In setup files, these
commands must be specified using the command name.
The mnemonic is not allowed. Otherwise, the form is
the same as described in chapters 4 and 5.

A.l TABS

The TABS command may be used to change the default tab
setting. The default is TABS 4. Both forms of the TABS
command may be used. See the TS command in the editor
state commands.

A.2 ROLL

The ROLL command may be used to change the default
setting for the number of lines scrolled by the roll up
and roll down commands. The default roll size is three
less than the screen height. See the RL command in the
editor state commands.

A.3 AUTOINDENT

The AUTOINDENT command may be used to turn on auto indent
from the setup file. The default is off.

A.4 TRANS

The TRANS command may be used to change the default mapping
of commands to keys. A complete remapping may be performed
or the default mapping may be slightly modified. See the
TR command in chapter 5.

A.5 DEFINE

The DEFINE command may be used to define macro editor
commands formed from the built in commands. If a macro
command references a character sequence defined by the
TRANS command or by another DEFINE command, the referenced
sequence must have been defined on a previous line. There
is a limit of 64 macro definitions. See the DM command in
chapter 5.

- 49 -

B. Special Commands

The special commands are commands which may only be used in
a setup file. The last four commands in this section define
terminal characteristics. These commands are automatically
created by the SETEDIT utility and therefore may be included
in the setup file through the use of this utility.

B.l The INIT Command

The INIT command may be used to send a string of characters
to the terminal when the setup file is loaded. The command
takes one parameter which is a quoted string. The string
may contain either printable or non-printable characters.
Printable characters may be sent to identify the setup file
being used for the current edit session. Non- printable
characters which the terminal intercepts as commands may
also be used to set some desired terminal characteristic.

Example: INIT 'Pascal Setup File'

B.2 The EXIT Command

The .EXIT command is identical to the INIT command except the
string is not sent to the terminal until the editor is
exited. There can only be one EXIT command in a setup file.

Example: EXIT 'Edit Finished'

B.3 The START Command

The START command specifies a string of commands that the
editor executes immediately after the file to be edited has
been loaded. This command may be used to execute other
editor commands which are not allowed in the setup file.
The following example causes the editor to come up in insert
mode with compression turned off. There can only be one START
command in a setup file.

Example: START '=IM=TF'

- 50 -

B.4 The CMD Command

The CMD command provides a way of giving names to
the built in editor commands. The commands which do not
require parameters have only a two character mnemonic. The
CMD command may be used to define a longer name to also be
associated with a particular command. It requires two
parameters. The first is the name identifier. The second
is a string containing an editor mnemonic. This may make it
easier to remember than the two character mnemonic. The
following example assigns the name MARK to the mnemonic MK.
This will allow the mark command to be executed by either
the full name or the two character mnemonic when in command
mode.

Example: CMD MARK '=MK'

The following four commands describe the terminal
characteristics. The SETEDIT utility may be used to create
these commands in a setup file.

B.5 The HEIGHT Command

The HEIGHT command takes a single integer parameter which
defines the number of lines on the screen.

Example: HEIGHT 24

B. 6 The WID1rH Command

The WIDTH command takes a single integer parameter which
defines the character width of the screen.

Example: WIDTH 80

- 51 -

B.7 The TERMINAL Command

The TERMINAL command defines the features of the
terminal. It takes two parameters. The first is an
identifier which identifies a particular function of
the terminal. The second parameter is a string
containing the character sequence required by the
terminal to perform that specific function.
The editor makes use of most of the smart functions
included in many of the latest terminals.

The following features are supported.

CLEAR - clear screen
CLREOS - clear to end of screen
CLREOL - clear to end of line
INSLINE - insert line
DELLINE - delete line
DELCHAR - delete character
INSMODE - enter insert mode
NOINS - exit insert mode
RSCROLL - scroll the screen 1 line down

(reverse linefeed with cursor at top of screen)
SCROLL - scroll the screen 1 line up

(linefeed with cursor at bottom of screen)
INSONE - insert one character

Other parameters of the terminal command specify how
cursor addressing is performed.

CURSOR - specifies the character sequence which precedes
the row and column. This parameter is used if
the terminal does not require character sequences
between and following the row and column address.

CURSORl - specifies the character sequence which precedes
the row and column. This parameter is used if
the terminal requires character sequences between
and following the row and column address.

CURSOR2 - specifies the character sequence which must
appear between the row and column.

CURSOR3 - specifies the character sequence which follows
the row/column address.

COFFSET ~ specifies the offset for addressing the first
row or column on the screen.

Example: TERMINAL CLEAR 'A[Y'

- 52 -

(
'

B.8 The CURSOR Command

The CURSOR command takes one parameter which describes
the algorithm used to address the cursor. The following
is a list of the possible cursor addressing methods. The
SETEDIT utility will generate one of these adressing
methods.

ROWCOL, ANSI!, COLROW, BINARY, ASCII, SPECIAL

Example: CURSOR ROWCOL

- 53 -

c. Sample Setup File
=====================

;**
;* TRS-80 MODEL 4 SAMPLE SETUP FILE *
;* This file is supplied on disk (SAMPLE/EDT) in binary *
;* format and may be used in place of SETUP/EDT if desired.*
; * Among other things, it map_s the arrow keys to *
;* appropriate cursor movement commands. To use this file,*
;* first rename SETUP/EDT and then rename SAMPLE/EDT to *
;* SETUP/EDT. The SETEDIT utility may be used to create *
;* a text format file if you wish to modify this setup *
;* file. ------------------ *
;* This setup file maps some commands to the clear *
;* and break keys. In the explanations below, the *
;* clear key is represented as <CLR> and the break *
;* key as <BRK>. When executing commands mapped with *
;* <CLR>, the clear key should be held down. When *
;* executing commands mapped with <BRK>, the break *
;* key should be pressed and released. *
;* The keys which are mapped to commands are commented *
;* in the form: ;key --> command *
;* Note: *
;* The editor's internal mapping of keys to commands *
;* remains valid for all keys which are not explicitly *
;* remapped by this setup file. *
·** I

;------------------terminal definition----------------------
; (This section was created by SETEDIT)
;
TERMINAL CLEAR I"'\ A - I ;clear screen
TERMINAL CLREOS I A I ;clear to end of screen

;clear to end of line
;scroll 1 line up

TERMINAL CLREOL ,,...-:::::-,

TERMINAL SCROLL ,,.,J'
CURSOR
HEIGHT
WIDTH

SPECIAL
24
80

;special cursor addressing
;number of lines/screen
;number of characters/line

;------------- end of terminal definition-------------------
i
;
;

(Customization Section)

; The following two commands send strings of characters
; to the terminal. "Nin the INIT string insures that
; the Model 4 cursor is turned on • .
I

INIT '"NReading Setup File'
EXIT 'Edit Session Finished'

;send message at start
;send message at end .

I

;KEY TRANSLATIONS
;-------------- -
i
i .
I .
I .
I

;
;
;
;

The following key tranlations redefine how editor
commands are mapped to the Model 4 keyboard.
Appendix B of the Model 4 Disk System Owners's
Manual has a keyboard diagram which shows the
characters generated by each key •

The following key translations map the arrow keys
to cursor movement commands. The left arrow key
generates "H which is internally mapped to =LF.

- 54 -

J

(

TRANS '"'I'
TRANS '""'J'
TRANS I ""'KI
TRANS '#8A'
TRANS '#8B'
TRANS '#88'
TRANS '#89'

'=RT'
'=DN'
'=UP'
'=RD'
'=RU'
'=BT'
'=TB'

;right arrow
;down arrow
;up arrow
;<CLR> down arrow
;<CLR> up arrow
;<CLR> left arrow
;<CLR> right arrow

--> cursor right
--> cursor down
--> cursor up
--> roll down
--> roll up
--> back tab
--> tab

; The following key translations map various commands
; mnemonically using the clear key as a control key.
; Use <CLR> N for insert line.

TRANS '#C6' '=FN'
TRANS '#D2' '=RN'
TRANS '#C3' '=DC'
TRANS '#D7' '=DW'
TRANS '#CC' '=DL'
TRANS '#D5' '=UL'
TRANS '#C4' '=DU'
TRANS '#C9' '=IC'

;<CLR> F
;<CLR> R
;<CLR> C
;<CLR> W
;<CLR> L
;<CLR> U
;<CLR> D
;<CLR> I

--> find next
--> replace next
--> delete character
--> delete word
--> delete line
--> undelete line
--> duplicate line
--> insert character

; The following key translations map commands to the
; 3 function keys Fl, F2, and F3. The shifted function
; keys are represented as <SFn>

TRANS '#81' '=CM'
TRANS '#82' '=BW'
TRANS '#83' '=FW'
TRANS '#91' '=IM'
TRANS '#92' '=SP'
TRANS '#93' '=MG'

; <Fl>
; <F2>
; <F3>
;<SFl>
;<SF2>
;<SF3>

--> command mode
--> backward by word
--> forward by word
--> insert mode
--> split line
--> merge line

; The following key translations map commands to the
; keys using the break key <BRK> as a prefix.

"' ;
TRANS '#B0#0A'
TRANS '#80#0B'
TRANS '#80#08'
TRANS '#80#09'
TRANS '#B0L'
TRANS '#801'

;

'=BB'
'=TP'
'=BL'
'=EL'
'=DE'
'=DE'

;<BRK> down arrow
;<BRK> up arrow
;<BRK> left arrow
;<BRK> right arrow
;<BRK> L
;<BRK> 1

--> bottom of buffer
--> top of buffer
--> beginning of line
--> end of line
--> delete to end of line
--> delete to end of line

;EDITOR STATE CONFIGURATION
;--------------------------
; The following commands set default states for the
; editor.

START '=TF'
TABS 3
AUTO INDENT
ROLL 23 . ,

;tab compression off
;set tabs every 3 spaces
;turn on auto-indent
;set scrolling to screen height - 1

;DEFINE LONG NAMES FOR THESE COMMANDS
;------ ---. ,
; . ,
CMD
CMD

The following commands define long names which may
be used while in command mode to execute these commands.

MARK I =MK'
INDENT '=AI'

;mark is equivalent to mk
;indent is equivalent to ai

- 55 -

;
;DEFINE MACROS

·-------------I

; The following commands define macro's which map . Pascal keywords to the numeric keys using clear as a I

; control key.
;
DEFINE '#Bl' 'PROGRAM I ;<CLR> 1 --> PROGRAM
DEFINE '#B2' 'CONST ' ;<CLR> 2 --> CONST
DEFINE I #B3 I 'TYPE I ;<CLR> 3 --> TYPE
DEFINE '#B4' 'VAR ' ;<CLR> 4 --> VAR
DEFINE '#BS' 'PROCEDURE ' ;<CLR> 5 --> PROCEDURE
DEFINE '#B6' 'FUNCTION ' ;<CLR> 6 --> FUNCTION
DEFINE '#B7' 'BEGIN ' ;<CLR> 7 --> BEGIN
DEFINE '#B8' 'END' ;<CLR> 8 --> END
;
; The following commands define macros's which use
; the macro's defined above to create Pascal program shells.
; The next line command (=NL) is internally mapped to AM
; which is generated by the <enter> key. AM is used in
; place of =NL in the definitions below.
;
DEFINE '#80D' '#B2"'M#B3"'M#B4' ; <BRK> D --> declarations
DEFINE '#80B' '#B7 ... M#B8' ; <BRK> B --> body
DEFINE '#80F' '#B6,..M#80#44,..M#80#42;' ;<BRK> F --> function
DEFINE '#80P' '#B5"'M#80#44AM#80#42;' ;<BRK> p --> procedure
;
; The following macro definition defines
; <BRK> S to put a complete program shell on the screen .
I

DEFINE '#80S' '=IM=BL"'M"'K#Bl ... M#80D"'MAM#80PAM~M#80FAMAM#80B.=HM=FW =
;
; The following definitions make the above macros work
; with lower case.
;
DEFINE '#80d' '#80D' ;<BRK> d --> <BRK> D
DEFINE '#80b' '#80B' ;<BRK> b --> <BRK> B
DEFINE '#80f' '#80F' ;<BRK> f --> <BRK> F
DEFINE '#80p' '#80P' ;<BRK> p --> <BRK> p
DEFINE '#80s' '#80S' ;<BRK> s --> <BRK> s
i
; The following macros define keys which terminate an edit
; session. <BRK> Eis defined to exit and save the file
; being edited but not save a backup file. <BRK> Q is
; defined to quit the edit without saving the file.
i
DEFINE '#BOE' '=EX=NLN=NL' ;<BRK> E --> exit
DEFINE '#80Q' '=QTY=NL' ;<BRK> Q --> quit
DEFINE '#80e' '#BOE' ;<BRK> e --> <BRK> E
DEFINE '#80q' '#80Q' ;<BRK> q --> <BRK> Q
;
; end of setup file

- 56 -

(

A. Sample Custom Terminal Setup
================================

This is a sample execution of the SETEDIT utility using the
CUSTOM terminal selection. The terminal used in the sample is
the TELEVIDEO 925/950. Note that for steps 26 and 30, A@ was
used. This is the null character. Null characters are ignored
by most terminals. They may therefore be used as fill characters
in order to control timing. If a particular terminal function
responds too slowly, null characters may be used to allow the
terminal time to complete the function.

1) Type SETEDIT
2) Please make a selection: T <enter>
3) Please select a terminal or Oto exit: 31 <enter>
4) Do you want to continue? Y <enter>
5) B=binary, A=ascii: B <enter>
6) Which is first, row or column (R,C): R <enter>
7) enter a decimal number (space=32): 32 <enter>
8) What characters come before the row number: -c= <enter>
9) What characters come between the row and column: <enter>

10) What characters come after the column number: <enter>
11) Does your terminal have clear screen ? Y <enter>
12) Sequence to perform it: -c+ <enter>
13) Does your terminal have clear to end screen? Y <enter>
14) Sequence to perform it: A[Y <enter>
15) Does your terminal have clear to end of line? Y <enter>
16) Sequence to perform it: A[T <enter>
17) Does your terminal have insert line ? Y <enter>
18) Sequence to perform it: A[E <enter>
19) Does your terminal have delete line ? Y <enter>
20) Sequence to perform it: A[R <enter>
21) Does your terminal have delete character ? Y <enter>
22) Sequence to perform it: -cw <enter>
23) Does your terminal have enter insert mode ? N <enter>
24) Does your terminal have exit insert mode ? N <enter>
25) Does your terminal have scroll 1 line down ? Y <enter>
26) Sequence to perform it: A[jA@A@A@A@ <enter>
27) Does your terminal have insert 1 character ? Y <enter>
28) Sequence to perform it: A[Q <enter>
29) Does your terminal have scroll 1 line up ? Y <enter>
30) Sequence to perform it: -rJ-@ <enter>
31) Please make a selection: W <enter>
32) Enter name for binary setup file: SETUP.EDT
33) Please make a selection: E <enter>

- 57 -

ESL-NS363

APPENDIX 1. TO CONTRACT DAAK20-80-C-0521.

(

SYSTEM IMPLEMENTATION MANUAL

Table of Contents

Introduction •••..•• .
System Description.

PASCAL ••••.••••
OPTIMIZE.
CODEGEN ••
RUNP •••.
LINKLOAD ••••
PASCALB ••

Using TRS-80 Pascal ••.
Compiling a program.
The PASCAL command •.
The RUNP command ..•••
The compiler listing.

Using
The
The
The
The
The
The

the LINKLOAD program.
Load command •••••
Symbols command .•
Run command ...•••••
Build command.
Init command ..•
Trsdos command •..

Error messages ..••.•

TRSDOS
Estimating

File and Device Names.
Stack Size •••.••

Memory Usage ••. Pascal
Compiler Memory Constraints .•.
Real Numbe.r s ••••..••••••••••.•

Procedure and Function Library •.
TRSLIB routines ••.•.•.••...•

System interface routines.
Input and output routines •.
File routines ...
Screen routines.
Extended memory routine ••

RANDOM access file routines •..••••
Openrand •••
Readrand ••
Wri terand •••
Closerand •.

STRING routines •.••
Linking Assembly Language to Pascal ••
Miscellaneous ••••••••••••••••••••••••

Generating EOF from the keyboard ••
Patches .••••••••••••••••.•••••.•••

1

3
3
3·
3
3
4
4

5
5
6
7
8

9
10
10
11
11
12
12
12

13
14
15
15
16

17
18
18
22
23
27
29
31
31
31
32
32
35

37
39
39
39

:;,· ..

INTRODUCTION

This manual describes the specific characteristics of TRS-80
Pascal as implemented on the TRSDOS Version 6 operating system.
In every language system implementation, there are certain language
features that vary from one computer to the next. One of the
advantages of TRS-80 Pascal is that these variations are minor.
Machine dependent characteristics include such items as how to
invoke the compiler and support utilities.

TRS-80 Pascal for the Model 4 is almost totally compatible with
TRS-80 Pascal for the Model I/III. The only difference is the
addition of a couple of procedures supplied in TRSLIB/OBJ. If use
of these machine dependent routines is avoided, the object code
from programs compiled on the Model I/III computers may be
relinked with the proper runtime for the Model 4 and executed.
The same applies for programs compiled on other computers using
Alcor Pascal. They may be relinked with the TRS-80 runtime
package and executed on the TRS-80. Portability between
computer systems is a very important feature of this Pascal
system.

- 1 -

System Overview Diagram

OPTIMIZE

--
EDIT

--
I

Pascal File (/PCL)
I
V

PASCAL or
PASCALB

I
Object File (/OBJ)

I<--------- --------->I CODEGEN

Smaller Object Faster Object I
File (/OPT) File (/COD)

--------------------> <--------------------
Executable Object File

(/OBJ, /OPT, or /COD)
I

V
--

RUNP or
LINKLOAD

- 2 -

l

(

System Description

PASCAL

The Pascal compiler is simply a program that is written in
Pascal and that executes on the host computer. It's purpose is to
translate other Pascal source programs into an intermediate language
called p-code. The p-code is a low level language designed
specifically as a target language for the Pascal compiler and
resembles the assembly language for a stack oriented computer. Once a
program has been compiled, the object p-code program is stored as an
object file {/OBJ). The /OBJ file may be executed directly or may be
run through the advanced development package (ADP).

Advanced Development Package

OPTIMIZE (optional)

After the source program has been translated into object code, it
may be processed by the optimizer. The purpose of the optimizer is to
remove statement redundancy in the translated object code. This will
effectively reduce the final size of the program by approximately
10-30 percent. The optimizer should be used where program size is
important. The optimized p-code is an exceptionally compact
representation of the Pascal program. This is evidenced by the fact
that the Pascal compiler itself {an 8500 line Pascal program), can be
run on a 48k machine without resorting to overlays.

CODEGEN {optional)

If program execution speed is important, the native code generator
program may be used to process the object program. Codegen
will generate native Z-80 code which may be directly executed by the
processor. Execution speed is usually increased by a factor of 3 - 5
times. One of the drawbacks of code generation is that the resultant
program will grow in object code size by a factor of 2 - 3 over the
p-code version. For large Pascal programs, (such as the compiler
itsel~) the resultant program image may not fit into available memory.
For small programs this may not be a factor. To combine the best of
both worlds, the codegen program will allow selective code generation
of specific modules in a program. This allows the critical paths of a
program to be translated into native Z-80 instructions, while at the
same time reducing the overall program size by utilizing p-code for
the rest of the program. If program size is not a factor, full
code-generation may be performed.

- 3 -

System Description

RUNP

After the Pascal source program has been compiled, and/or
processed by the advanced development package, it may be
executed by the RUNP program. This utility will directly
exec~te the compiled object code.

LINKLOAD

After.the compiler has translated the source code into p-code,
the p-code file may be loaded into memory and executed. The
program that performs this is the LINKLOAD utility. Its purpose
is to load any number of object modules into memory. This
allows separate compilation of procedures and functions. To
perform separate compilation of a procedure or function, the
compiler NULLBODY option must be used. For more information,
see _the Reference Manual. The linking loader includes an
interpreter in the final load module that executes the p-code
instructions when the program is run. The linking loader also
has the capability of storing the memory image of the program as
an executable command file. Once an image has been saved, the
program can be executed simply by typing the file name at the
TRSDOS command level.

PASCALB
Overlayed compiler

The size of a Pascal program that may be compiled is dependent
on the number of symbols used in the source program and not
necessarily the number of lines in the program. The
non-overlayed compiler (PASCAL) should be able to compile a
typical 4000 line program with all of its associated symbols. A
further improvement can sometimes be made by separately
compiling procedures or functions and minimizing the use of
global variables. If the program is too large for the
non-overlayed compiler, the overlayed compiler may be used. The
overlayed compiler has been segmented such that parts of it
reside on the disk during execution, and are read into memory
only as needed. The overlayed compiler will execute more slowly
than the non-overlayed version, but generates identical object
code. The overlayed compiler has enough space to compile a
typical 10000 line Pascal program with all of its associated
symbols.

- 4 -

)

(

Using TRS-80 Pascal

This section describes the procedures for compiling and executing
Pascal programs on the TRSDOS operating system. TRS-80 Pascal is
designed to make this task as easy as possible. The first step is
to analyze the problem to be solved and to write a Pascal program
that solves it. There are many fine textbooks available that
describe programming techniques. Pascal is a very powerful
expression language for solving programming problems. If you are
not familiar with the Pascal language, refer to the Tutorial
Manual for information on the language. For those familiar with
Pascal, the Reference Manual contains compact and detailed
information on the features of TRS-80 Pascal.

Once the program has been designed, the next step is to enter the
program into the computer. This is normally accomplished with the
aid of a text editor. A screen oriented text editor is supplied
with the compiler. For details on how to use this editor refer to
the Editor Manual. Any other editor that can produce an ordinary
Ascii text file may also be used.

COMPILING THE PROGRAM

When the program has been entered into the computer and placed in
a disk file, the next step is to compile it. The Pascal compiler
translates the source program into a form that the computer can
execute. For example, suppose that you have developed a program to
prepare your income tax return. This program may be stored in a
file called: TAXES/PCL. The simplest method to compile and execute
this program is to type the two commands:

and
PASCAL TAXES <enter>
RUNP TAXES <enter>

to compile the program
to execute the program

Note: The PASCAL command appends the extension /PCL to the
file name. The RUNP command appends the extension /OBJ to the
file name if no extension is specified.

Let's examine the process in more detail. The first line causes
the operating system to load and execute the Pascal compiler. The
compiler then translates the Pascal source code contained in the
file: TAXES/PCL into code that can be run on the computer. This
code is stored in a file called: TAXES/OBJ. A listing will be sent
to the screen. The listing shows the source program and will
contain error messages for any errors detected. The listing will be
described in more detail in a later section. If errors are
detected, code numbers and error messages will be contained in the
listing. The errors in the source program must be corrected before
the program can be executed.

Once the program has been compiled without errors, it may be
executed with the RUNP command. RONP TAXES causes the object code
stored in the file: TAXES/OBJ to be loaded into memory and executed.

- 5 -

Using TRS-80 Pascal

The first thing that a Pascal program normally does is to open
the logical files "INPUT" and "OUTPUT". When this happens, the
prompts:

INPUT =
OUTPUT =

will appear on the screen. At this time you may enter the file
or device to be used when the program reads from input or writes to
output. If you simply press the enter key, then input and output
will be directed to the screen. When any file is opened by a Pascal
program (by calls to RESET or REWRITE), a prompt will appear on the
screen. To the left of the equal sign will be the Pascal name of the
file being opened. You should type the name of the disk file or
device to be associated with that file. Note - The INPUT, OUTPUT
prompts may be eliminated by the use of the (*$NO INOUT*) option.
See compiler options in the Reference Manual.

The runtime mapping of Pascal files to physical files and devices
allows a program to redirect its input and output without any
changes to the source program and without recompiling the program.
For example, you could test the taxes program with the output going
to the screen. When you are satisfied with the results, the output
can be directed to a file or line printer instead.

The file names that you type to direct Pascal input and output are
in the same format as normal TRSDOS file names. The disk drive
specification is optional. Device names may also be substituted for
filenames. Devices include :C (CRT), :L (line printer), and :Dis a
dummy device. If :Dis used, no output will occur. This may be
useful if you wish to discard some of the output of a program.

THE PASCAL COMMAND

The PASCAL command causes the Pascal compiler to be loaded and
executed. This command has two forms. The simplest form is:

(angle brackets required when stack is specified)

PASCAL <stack> filename

where filename is the name of a file containing a Pascal program.
The <stack> is an optional parameter that sets an upper limit on
memory space that the compiler may use for stack manipulations. The
default stack size used by the compiler is 4K. This should be
suitable for most applications. The compiler requires a minimum of
3.9K of stack to execute.

- 6 -

(

Using TRS-80 Pascal

The compiler itself is a Pascal program and follows the same
conventions for stack and heap usage as other Pascal programs (See
pages 15,16). In the short form, the extension for the source file is
assumed to be /PCL and the object code is sent to filename/OBJ. Any
extension typed in the command line will be ignored. A disk drive
name may also be specified. For example,

PASCAL TAXES:l <enter>

will cause the program TAXES/PCL to be compiled and the object to be
stored on disk drive 1. In this case the same disk drive will be
used for both source and object. If the disk drive is omitted, the
compiler will search for the file starting with drive O. In the
short form, the listing will always be displayed on the screen.

The long form of the Pascal command uses simply: PASCAL to invoke
the compiler. In this case, the file names for the source, listing
and object will be prompted for on the screen. You should type the
names of the actual files to be used. Normal TRSDOS syntax applies.
In this case the file names are used as specified. The source and
object can be on different disk drives and the listing can be placed
in a file, sent to the screen or sent to the line printer. For
example, the following sequence will cause the file: TAXES/TMP to be
compiled with the object code stored in TAXES/OBJ on disk drive 2.
and the listing will be sent to the line printer.

PASCAL
SOURCE
LISTING= :L

<stack>
= TAXES/TMP

OBJECT = TAXES/OBJ:2

THE RUNP COMMAND

The runp command is used to load and execute a previously compiled
Pascal program. The object code will be loaded and the program
executed. The runp command contains the object code for the TRS-80
support routines (such as PEEK, string routines, etc). Any of
these routines can be called. If any other external procedures are
required, the linking loader must be used to link these external
procedures to the program. The runp command is invoked as:

RUNP TAXES <enter>

Pascal programs use a stack to store local variables and to save
return addresses for procedure and function calls. This stack is
allocated when the program is executed and the required size is
determined by the number and type of variables declared and the
number of and sequence of procedure calls. Methods of estimating
the amount of stack required for a program are included in a later
section of this manual.

- 7 -

Using TRS-80 Pascal

The runp command allows the amount of stack space to be specified
on the command line. In the runp command, the size of the stack is
selected by following the program name with the stack size,
separated with a blank or a comma. For example, the following line
would cause the program DATABASE to execute with 15K (15360 bytes)
of stack space. (note that there are no angle brackets used with
the runp command).

RUNP DATABASE 15K

The stack size can be specified as a decimal or hexadecimal
number. Hexadecimal numbers have a'#' as the first character.
This is the same notation as is used in the Pascal language. The
letter 'K' means 1024, so 8K is equivalent to 8*1024 or 8192. If no
stack size is specified, then one half of the unused memory space is
allocated for the stack, and the other half to the heap. The heap
is the area of memory used by the Pascal program for dynamic memory
storage as required by the procedures NEW and DISPOSE.

When execution of the program completes, the amount of stack and
heap used is displayed on the screen. These numbers reflect the
actual quantity of memory used during execution.

THE PASCAL COMPILER LISTING

The Pascal compiler reads the source program from a file and
produces two outputs. One of these is a file containing the object
code. This code is loaded when the program is executed. The other
output of the compiler is the listing. The listing contains the
text of the source program with some additional information.

The listing is divided into pages. At the top of each page is a
heading. The heading contains the version number of the compiler,
and the page number. Each page after the first contains a form feed
(control/Lor #0C) character. The form feed will cause a page eject
on most printers. The number of lines per page may be changed by a
compiler option in the source program. See the Reference Manual.

Each line of the listing is numbered beginning with line 1. The
compiler may also generate hexadecimal addresses for each line of
the listing. The compiler widelist option causes this extra
information to be generated. The addresses represent the locations
of the generated object code relative to the start of the program.
If the program contains procedures or functions, the addresses for
these routines are relative to the start of the routine.

- 8 -

)

(

Using TRS-80 Pascal

If errors are detected by the Pascal compiler, error messages
will appear in the listing. Error message lines have a string of
five asterisks('*****') at the beginning of the line. An up arrow
will appear pointing to the approximate location within the line
where the error was detected. This will be followed by one or more
error codes. It is possible for a single error to generate more
than one error code. For example, a procedure argument which is an
undefined variable also does not match the type of the parameter.
In most cases, the first error code identifies the cause of the
error.

If any errors are detected, a summary of the meanings of the
error codes generated is printed at the end of the listing.

THE LINKLOAD COMMAND

This section describes the use of the Pascal linking loader. The
linking loader provides powerful facilities for configuring Pascal
programs. Separately compiled programs and procedures may be linked
together and executed. Programs may-be linked and stored as command
files on disk and then later invoked from TRSDOS as commands. These
command files behave in the same way as the utilities supplied with
the operating system. This section assumes that the reader is
familiar with the Reference Manual.

The loader is executed by typing LINKLOAD at the TRSDOS command
level. At this point the linking loader is brought into memory from
disk. The first item displayed is a menu of commands followed by
the command prompt:

L=LOAD, R=RUN, T=TRSDOS, I=INIT, S=SYMBOLS, B=BUILD CMD
>>

Each of these commands will be described in detail later. All
commands require only the single letter, although longer names will
also be accepted. A command is terminated with the <enter> key. To
execute a command, simply type its first letter followed by <enter>.
If more information is required, additional prompts will be
supplied. The list of commands can be displayed by typing H <enter>
or? <enter>.

- 9 -

Using TRS-80 Pascal

L: The load command

The load command is used to load programs, procedures and
functions into memory. To load a program, type "L" and press the
<enter> key. The load command will ask for a file name. Type the
name of the file in standard TRSDOS notation. The file should contain
object code generated by the Pascal compiler. The object file
will be opened and the object code will be loaded into memory.
Each time a procedure or function is loaded, its name will
be displayed on the screen. This will allow you to monitor the load
process, and shows the identity of the modules being loaded. The
program name will appear last.

The object code for each Pascal procedure is compiled into a
separate entity. These are then linked together when they are
loaded. This allows procedures to be compiled separately and then
linked. Thus, a program may be compiled a piece at a time, and when
changes are made, only the parts affected by the change need to be
recompiled. This also allows the creation of libraries of
utilities. These utilities can be loaded with any program that
needs them, but need be compiled only once.

s: Symbols

The linking loader records the name and address of each procedure
in a table as it is loaded. Also in this table are the names of
procedures that have been called (referenced) by another procedure,
but have not yet been loaded into memory. This symbol table can be
displayed to the screen with the "S" command.

The symbols command displays all currently defined or referenced
symbols on the screen. The display may be halted by pressing
<shift>@ and continued by pressing <enter>. One procedure name is
displayed per line. After the procedure name is a character that
de·scribes the use of that procedure. A "D 11 indicates that the name
is defined; that is, the procedure has been loaded into memory. An
"R" indicates that the procedure has been referenced but not yet
defined. This means that a procedure that has already been loaded
makes a call to this procedure. All procedures that are called must
be loaded before the program can run. A "C" indicates that the
symbol is the name of a common block. Commons are used to provide
statically allocated shared data. See the Reference Manual for
an explanation of the use of commons.

The last item on the line is the address of the symbol. If the
symbol is defined ("D"), then this is the address in memory where the
procedure begins. If the symbol has not been defined C"R"), then
this is the address of the last place it was used (called).

- 10 -

. ./

(

Using TRS-80 Pascal

R: RUN

After a program has been loaded, it can be executed with the
Run command. The linking loader prompts for the amount of stack
space required by the program. As in the RUNP program, the default
is to allocate one-half of the unused memory to the stack, and the
other half to the heap. If these space allocations are
sufficient, then simply press the <enter> key. Otherwise enter a
value. The size of the stack may be expressed in decimal,
hexadecimal (precede the number with"#"), or in kilobytes. 8k
means 8 times 1024, or 8192 bytes. Methods of estimating the
required stack size are included in a later section of this
manual.

The program will execute after the prompt is answered. If
files are to be used in the program, the names of the files to be
used will be determined from the keyboard. When a file is opened
with RESET or REWRITE, the Pascal file name will be displayed on
the screen and you will be requested to type the name of the
actual file to be used. The names are in standard TRSDOS notation.
You may also specify a device instead of a file name. The legal
device names are :C (crt), :L (line printer), and :D (dummy).
(Prompts for filenames may be eliminated by the use of the external
procedure SETACNM. Files or device names may be built into the
program with SETACNM. See the section on external procedures and
functions in TRSLIB.

B: Build a command file

Once a program has been loaded, it may be saved on disk as a /CMD
file. This is done by the build (B) command. The linking loader
first prompts for the stack size as in the run command. The next
prompt asks for a file name. This is the name of the file that will
contain the program. The B command causes the program to be saved
to disk in TRSDOS command file format and then exits to TRSDOS. The
program may then be executed by simply typing the name of the
command file from TRSDOS.

- 11 -

Using TRS-80 Pascal

I: Init

The I command clears the symbol table and redisplays the
command menu. This command may be used if the wrong file is
loaded by mistake. It is equivalent to exiting to TRSDOS and then
running LINKLOAD again.

T: TRSDOS

The T command returns to the TRSDOS operating system.

LINKLOAD ERROR MESSAGES

*** CANNOT OPEN FILE

This message is generated when the loader cannot find the
file specified with the L command. This may be caused
by a misspelling or the wrong disk being in the drive.

*** UNRESOLVED REFERENCES

When you use the run command to execute a program or the build
command to generate an image on disk, the loader checks that all
of the procedures that are called within the program have been
loaded. If there are procedures or functions that have been
called but have not been loaded, then this message is generated.
At this point, you can load the required files and repeat the
command. The S command may be used to list names of the
procedures that are not yet defined. These will have an "R" in
the listing.

*** INVALID OBJECT TAG

This message is displayed when a load is attempted on a file that
is not a valid object file. The most frequent cause of this
error is an attempt to load the source program instead of the
object.

*** SYMBOL TABLE FULL

The linking loader has room for 256 different external symbols.
If more procedures than this are loaded, the symbol table will
become full.

*** ILLEGAL REFERENCE

This message signifies an inconsistent structure in an object
file. It is an indication that the file has been damaged. The
best solution is to recompile the offending program.

- 12 -

TRSDOS File Names and Device Names

In TRSDOS, a file name has four parts. The main file name is
1 to 8 characters long and identifies the file. This part must
begin with a letter and may contain any alphanumeric characters.

The second part of the file name is an optior.al password. The
password is a sequence of 1 to 8 alphanumeiic characters, the
first of which must be a letter. The password is used to limit
access to file.

The third part of the file name is an optional extension which is
separated from the rest of the name by a slash(/). The extension
may be 1 to 3 characters in length and is usually used to identify
the type of the file (eg. /PCL for Pascal source, /OBJ for object
code, etc.).

TRS-80 Pascal uses certain file extensions as defaults. For
example, when the Pascal compiler is executed with a file
specified on the command line, the compiler assumes that the
extension is PCL and it places the object code into a file with
the same name but an extension of OBJ. The RUNP command assumes
that its input has the extension OBJ unless otherwise specified.

OPTIMIZE by default takes its input from a file with an
extension of OBJ and writes its output to a file by the same name
with an extension of OPT. In a simlar manner, CODEGEN uses OBJ as
a default input and COD as the corresponding output.

The fourth part of the file name is the disk drive. This part is
also optional. The drive number is separated from the rest of the
file name by a colon(:). If a drive number is not specified, all
available drives will be searched. The search begins with drive
number O and continues until the file is found or there are no more
drives to search. If a drive number is specified, only that drive
is searched. Specifying a drive number will insure that a file is
placed on a specific drive and will also speed up file access time.

Example File Names:

ACCOUNT/DAT
SAMPLE2/OBJ:l
DATABASE
SECRET.REWQ/PCL
HOMEWRK:2

Device names are single characters preceded by a colon(:).
The following devices are supported by the runtime.

:C the CRT
:L the Line Printer
:D dummy device

- 13 -

Using TRS-80 Pascal

ESTIMATING STACK SIZE

Pascal programs use a stack to store local variables and to
save return addresses for procedure and function calls. This
stack is allocated when the program is run and the required size
is determined by the number and type of variables declared and the
number of and sequence of procedure calls. The stack is a dynamic
structure. Space is allocated when a procedure is called and
released when the procedure is exited.

The total stack size required by a program is determined from
its dynamic behavior at run time. Each time a procedure is
called, space is allocated for its local variables. The total
stack in use is a function of the number of procedures active at
the time and the number and sizes of variables used within those
procedures. If two procedures are never active at the same time,
then the space used by each can be shared. The total stack that
must be allocated is determined from the maximum size that is in
use at any given time.

The simplest method of determining stack requirements is to run
the program. Specify enough stack for it to run, perhaps with an
excess. When the program terminates, the maximum stack used by
the program is printed on the CRT. A program may use differing
amounts of stack each time it is executed. This often occurs
when a program is driven by a users input. A good rule of
thumb is to allocate 20% more stack than is required for a typical
execution of the program.

The size of stack required can also be determined from the
source program. It is necessary to determine which procedures
will be active at a given time. Then add the size of the local
variables for each procedure. If too little stack is allocated
for the program, it may terminate with a runtime error.

The sizes of simple variables are summarized below:

type size in bytes

CHAR 1
BOOLEAN 1
INTEGER 2
STRING 2
REAL 4
REAL (double precision) 8
FILE 32
TEXT 32

- 14 -

Using TRS-80 Pascal

The size of an array is determined by multiplying the size of
the array (upper bound-lower bound+l) by the size of an element.
The size of a record is determined by adding the sizes of its
individual fields. Packing is on byte boundaries.

The size of a set is one plus the ordinal of its largest
possible member divided by 8. Enumerated types require one byte,
and subranges require one or two bytes. (0 •• 255 requires one
byte, 0 •• 256 requires two bytes).

To calculate the total stack size required, you should also
include 64 bytes for the predeclared files INPUT and OUTPUT.
Active procedures require space for their parameters as well as
their local variables. Parameters passed by value require storage
based on the size of the variable. Parameters passed by reference
require two bytes each. Each active procedure also requires 9
bytes to store dynamic return information.

PASCAL MEMORY USAGE

The LINKLOAD and RUNP programs load at address Hex 3000.
The object code for Pascal programs load immediately above the
loader. The next segment above the program contains the Pascal
stack. The stack contains local variables and return addresses from
procedure and function calls.

The remainder of the available memory contains the heap. The
heap is a section of memory that is used for dynamic storage.
Programs that use pointers and the procedure NEW will use Etorage
from the heap. The heap also contains the buffers used to read
and write to files. The Pascal runtime support routines perform
blocking on data from files. Each file is allocated a 256 byte
buffer from the heap and information is read or written to this
buffer before being transferred to disk. This improves performance
by decreasing the frequency of disk accesses.

COMPILER MEMORY CONSTRAINTS

The minimum stack required by PASCAL/CMD is currently 3900 bytes.
If you specify less than this amount, 3900 will be used. PASCAL/CMD
requires this much stack even though the stack used message at the
end of a compile may indicate that less was needed. PASCALB/CMD has
no such minimum.

PASCAL/CMD allows enough space for approximately 500 symbols to
exist in a program being compiled. Each identifier used in a
program requires an entry in the compilers symbol table. Named
constants, types, variables, procedure and function names are all
identifiers in Pascal programs and are entered into the compilers
symbol table.

- 15 -

Using TRS-80 Pascal
Compiler memory constraints

There are some ways of saving memory during the compile so that
larger programs can be compiled. The limit on symbols is relative
to the number of symbols visible at any point within the program.
Symbols that are not available to the program are not retained by
the compiler. The use of symbol table space can be improved by
defining fewer global variables at the outer levels and making use
of locals whenever possible. This is also good programming
practice.

The length of symbol names is not relevant in Pascal, unlike
BASIC. Use of long names has no effect on program size or
compiler memory usage. However, extensive use of string and real
constants will cause the compiler to use more memory.

PASCALB is the overlayed or segmented version of the compiler.
This version dynamically loads portions of the Pascal compiler
from disk as needed. This increases the amount of memory
available for symbols and allows larger programs to be compiled.
The overlayed compiler will compile larger programs. I.E.; a
typical 6000 line program will compile successfully on a Model
4 system. The overlayed compiler will run more slowly due to
overlay loading. Therefore, use the non-overlayed compiler
until memory becomes a problem.

REAL NUMBERS

Real numbers are either single precision or double precision.
Whether real numbers in TRS-80 Pascal are considered to be single or
double precision is set by an option at compile time.
See the appendix of the Reference manual for a description of
the DOUBLE compiler option.

Single precision
Double precision

Accuracy

6 digits
16 digits

Range

(-)l.7E-38 •• (-)l.7E+38
{-)l.7E-38 •• (-)l.7E+38

Note: All trancendental functions are performed in double
precision whether single or double is specified. This is to
avoid round off errors that lower the accuracy of the result.
The functions are calculated to 9 digits accuracy. Single
precision numbers are rounded before truncation.

- 16 -

I
\

TRS-80 Procedure and Function Library

TRS-80 Pascal is supported by 3 libraries of procedures
and functions (TRSLIB/OBJ, RANDOM/OBJ, and STRINGS/OBJ).
TRSLIB/OBJ contains routines which provide access to
specific Model 4 or TRSDOS Version 6 features. RANDOM/OBJ
contains random access file routines. STRINGS/OBJ contains
a set of dynamic string functions. A routine from one of these
libraries may be used by a Pascal program simply by declaring
the routine as an EXTERNAL procedure or function.

Pascal programs may be executed with either the RUNP or the
LINKLOAD program. The RUNP program contains all the routines
in the 3 libraries. When executing a program with RUNP, any
library routine which is externally declared is automatically
linked into the program. The LINKLOAD program does not contain
any of the routines in the 3 libraries. When executing a program
with LINKLOAD, any library routine which is externally declared
must be linked to the program by loading the library file which
contains the routine.

Each of the library routines is described in the following pages.
A Pascal external declaration is given for each routine. This
declaration should be included in any program that uses the
routine. The external declarations for the library routines are
included in files TRSLIB/PCL, RANDOM/PCL, and STRINGS/PCL. Any or
all of these declarations can be inserted into a Pascal program
using the INSFILE command of the text editor.

In the following descriptions the type byte is frequently used.
This type may be declared as: BYTE= 0 •• 255. When a variable of
type byte is used, it will occupy a single byte of storage.

- 17 -

TRSLIB System Interface Routines

SVC

PROCEDURE SVC(VAR A, STATUS: BYTE;
VAR BC, DE, HL, IX, IY: INTEGER); EXTERNAL;

SVC is used to make TRSDOS Version 6 supervisor calls.
Supervisor calls provide the mechanism for executing
various TRSDOS operating system routines.
See the Technical Reference Manual (Cat. No. 26-2110) for
an explanation of the available supervisor calls.

The parameters passed to SVC will be loaded into the Z-80
registers. The parameters will also return the values of
the Z-80 registers when the SVC routine terminates.
The A register is used to specify an SVC number which
determines which operating system routine is executed.
Each operating system routine has specifications for
which Z-80 registers are used to pass information.

TIME

TYPE ALPHA= PACKED ARRAY[l •. 8] OF CHAR;
PROCEDURE TIME(VAR T: ALPHA); EXTERNAL;

TIME returns the current time of the system clock in
the form hh:mm:ss.

DATE

TYPE ALPHA= PACKED ARRAY[l •. 8] OF CHAR;
PROCEDURE DATE(VAR T: ALPHA); EXTERNAL;

DATE returns the current date of the system clock in
the form mm/dd/yy.

SOUND

PROCEDURE SOUND(TONE, DURATION: INTEGER); EXTERNAL;

SOUND is used to generate sound using specified tone
and duration codes. The TONE parameter should be passed
as a number between O and 7 with O being the highest
tone and 7 being the lowest. The DURATION parameter
should be passed as a number between O and 31 with
O being the shortest and 31 being the longest.

- 18 -

)

(

TRSLIB System Interface Routines

CMDLINE

TYPE STRINGPTR = ACHARSTRING;
CHARSTRING = PACKED ARRAY[l •• 80] OF CHAR;

PROCEDURE CMDLINE(VAR LOCATION, ORIGIN: STRINGPTR); EXTERNAL;

The CMDLINE procedure returns pointers to the command line
stored by the operating system. Each time a command is
executed from the TRSDOS Ready prompt, all characters

USER

typed are stored in a buffer within the operating system.
For example, when RUNP DATABASE FILEl <enter> is typed, the
operating system stores RUNP DATABASE FILEl in the buffer.

The ORIGIN parameter returns a pointer to an array
which contains the entire command line buffer. The
first element of the array is the first character of
the command line. The LOCATION parameter returns a
pointer to an array which contains only the part of
the buffer which begins with the first non-blank
character following the command name.

Using the above command line as an example,

ORIGINA
ORIGIN-[l]
LOCATIONA
LOCATION-Cl]=

= RUNP DATABASE FILEl
= R
= DATABASE FILEl

D

PROCEDURE USER(ADDRESS: INTEGER; VAR DATA: INTEGER); EXTERNAL;

This procedure interfaces to assembly language routines
resident in memory. ADDRESS is the physical address where
the routine is loaded.

Information is passed to the assembly language routine
through the DATA parameter. When the assembly language
routine is called, the HL register pair contains the value
of DATA. When the routine exits, the contents of the HL
register pair is returned as the new value of DATA. In
cases where more than one word of information is required,
the value of DATA can be the address of a variable. The
address of any Pascal variable can be obtained using the
predefined LOCATION function (eg. addr := LOCATION(x)).

The assembly language routine is entered with a standard
Z80 call instruction and should be exited via a return.
All Z80 registers are available for use in the assembly
language subroutine.

- 19 -

TRSLIB System Interface Routines

CALL$

PROCEDURE CALL$(ADDRESS: INTEGER; VAR A,STATUS: BYTE;

VAR BC, DE, HL, IX, IY: INTEGER); EXTERNAL;

This procedure can be used in a similar manner to USER to
call assembly language subroutines. The difference is that
CALL$ permits you to set up all of the Z80 registers from
Pascal. The values passed (except status) will be in the
registers when the subroutine is called. When the
subroutine returns, the current contents of all registers
are returned to the Pascal program via the reference
parameters. Status is the Z-80 flag register.

$MEMORY

PROCEDURE $MEMORY(VAR STACK, HEAP: INTEGER); EXTERNAL;

This procedure allows a program to determine the amount of
memory currently available. The parameter STACK returns
the current number of stack bytes available and the
parameter HEAP returns the amount of heap available.

HP$ERROR

PROCEDURE HP$ERROR(NEWSTATE: BOOLEAN;

VAR OLDSTATE: BOOLEAN); EXTERNAL;

This procedure sets the state of the heap error recovery
flag within the Pascal runtime system. When this flag is
set to true, then a call to the procedure NEW will cause
the program to terminate with an error message if no more
space is available. Setting this flag to false causes the
procedure NEW to return NIL if no space is available. The
calling program should check for NIL on each call to NEW
when this flag is set to false. This allows a program to
use maximum memory from the heap without danger of an
abnormal termination when space is exhausted.

- 20 -

TRSLIB System Interface Routines

PEEK

FUNCTION PEEK(ADDRESS: INTEGER) : BYTE; EXTERNAL;

POKE

This function returns the contents of any memory location.
It may be used to examine memory or memory mapped input
devices. ADDRESS is the address being examined. An
address may be passed if its value is known. The addresses
of Pascal variables may be obtained by calling the LOCATION
function. The LOCATION function is a predeclared function
which is described in chapter 9 of the Reference Manual.

PROCEDURE POKE(ADDRESS: INTEGER; VALUE: BYTE); EXTERNAL;

Poke is used to alter the contents of any location in
memory. It may also be used to write to memory mapped
output devices.

- 21 -

TRSLIB Input and Output Routines

INP

FUNCTION INP{PORT: BYTE) : BYTE; EXTERNAL;

OUT

This function performs input from a zao IO port. The port
number is passed to the function and the value read from
that port is returned as the function value.

PROCEDURE OUT(PORT, V~LUE: BYTE); EXTERNAL;

This procedure performs physical output to a Z80 port. It
may be used in conjunction with the function INP to
communicate with devices interfaced as input or output
ports. The two parameters specify the port number and the
value to be written to that port.

WRITECH
=======
PROCEDURE WRITECH(CH: CHAR); EXTERNAL;

This procedure writes a single character to the terminal.

WRITESTRING

TYPE
CHARSTRING = PACKED ARRAY[l •. XX] OF CHAR;

PROCEDURE WRITESTRING{VAR S: CHARSTRING; FIRST, LAST: INTEGER);
EXTERNAL; {XX is any length)

This procedure writes a portion of a string of characters
to the terminal. FIRST is the index of the first character
to be written, LAST is the index of the last character to
be written. The total number of characters displayed is:
LAST-FIRST+l. If last is less than first then no
characters are written. The type CHARSTRING may be
declared as a packed array of any length convenient for the
application. The XX above should be replaced by this
value, or XX should be declared as a constant.

- 22 -

TRSLIB Input and Output Routines

INKEY

PROCEDURE INKEY{VAR CH: CHAR; VAR READY: BOOLEAN); EXTERNAL;

This procedure attempts to obtain a character from the
keyboard. If a character is available, then CH is the
character and READY is set to TRUE. If no key is pressed,
then READY is FALSE and CH is the space character: ' '

GETKEY
======
FUNCTION GETKEY: CHAR; EXTERNAL;

This function waits for and returns the next character from
the keyboard.

File Routines

FILE$STATUS

FUNCTION FILE$STATUS{VAR F: TEXT) : BYTE; EXTERNAL;

This function returns the status of a file. The file.can
be of any type, but the external declaration must specify a
type that matches the type of file being tested. The byte
returned is the operating system error code for the latest
IO (input or output) error. If no errors have occurred,
then zero is returned. This function is used in conjunction
with IO$ERROR and allows a program to detect and recover _from
its own IO errors.

- 23 -

TRSLIB File Routines

IO$ERROR

PROCEDURE IO$ERROR(NEWSTATE: BOOLEAN;

VAR OLDSTATE: BOOLEAN); EXTERNAL;

This procedure sets the state of the IO error recovery flag
within the Pascal runtime system. This flag is used to
determine whether a program detects its own IO errors. If
the flag is set to true, then default error processing is
performed. In case of an error on a file or device, a
message is displayed on the CRT and the program halts.

If the IO error flag is set to false, then all IO errors
are ignored by the system, and it is up to the program to
check for and recover from IO errors. IO errors can be
detected by calling the function FILE$STATUS. NEWSTATE is
a boolean value that sets the new state of the IO error
recovery flag. OLDSTATE is used to return the previous
value of the flag. This allows a program to change the
state temporarily and then restore it.

DELFILE

TYPE PATH= PACKED ARRAY[l •• xx] OF CHAR; {xx is any length}
PROCEDURE DELFILE(VAR FILENM: PATH; VAR STATUS: INTEGER);

EXTERNAL;

This procedure deletes a file from any disk in the system.
FILENM should be the TRSDOS name of the file, including
(optional) drive specification. The file name should be
terminated by a carriage return (#OD). STATUS is 0 if
the operation is successful. A status of other than 0
is an operating system error code number.

RENAME

TYPE PATH= PACKED ARRAY[l •• xx] OF CHAR; {xx is any length}
PROCEDURE RENAME(VAR OLDNAME, NEWNAME: PATH;

VAR STATUS: INTEGER); EXTERNAL;

RENAME changes the name of a TRSDOS file. The OLDNAME and
NEWNAME should be the file names as in DELFILE (above).
Both file names must map to the same drive and there must
not be a file on that disk with NEWNAME as its name (use
DELFILE first if necessary). The file must not be open by
the program when rename is called. Status is 0 if the
operation is successful.

- 24 -

TRSLIB File routines

SET$ACNM

Note: The SETACNM procedure described on the following

page performs the same function as SET$ACNM and
is easier to use.

TYPE
FILENM = PACKED ARRAY[l •• XX] OF CHAR;
ALPHA = PACKED ARRAY[l •• 8] OF CHAR;

(Where XX is any length long enough for the filename}
PROCEDURE SET$ACNM(VAR F: TEXT; VAR file name: FILENM;

NAMELENGTH : INTEGER; VAR FILEID: ALPHA); EXTERNAL;

SET$ACNM is used to set the name of the physical file or device
to be associated with a Pascal file. It allows a program to
compute file names internally. For example, a database program
may know the name of the file containing the database. This
procedure allows the program to specify the file name rather than
requesting it from the keyboard.

The parameter F can be a file of any type. The external
declaration of SET$ACNM that is included in the source program
must specify a type for F that matches the actual file type to be
used. File name is a string containing the text of the file name.
This string must be compatible with the operating system syntax
for file names. NAMELENGTH is an integer that specifies the
length of the file name. FILEID is an 8 character string that is
used to identify the Pascal name for the file, such as INPUT or
OUTPUT. The first character of fileid must be an uppercase letter.

If SET$ACNM is called prior to a RESET or REWRITE on a file,
then Pascal will not prompt the CRT for the file name. All
subsequent RESET or REWRITES will not cause a prompt unless a
CLOSE(file name) is performed on the file. The file name
association will remain as previously defined by SET$ACNM.

{Example program segment)
TYPE
FILENAME= PACKED ARRAY [1 •• 15] OF CHAR;

= PACKED ARRAY [1 .. 8] OF CHAR; ALPHA
VAR FNAME: FILENAME;

FILEID: ALPHA;
F : TEXT;

PROCEDURE SET$ACNM(VAR
VAR

BEGIN

F:TEXT; VAR FNAME:FILENAME; LEN:INTEGER;
FILEID:ALPHA); EXTERNAL;

(* this assignment statement requires the name to be left*)
(* justified, and blank padded to the correct array length*)
FNAME:='DATA/TXT:0 ';
FILEID:='F ';
SET$ACNM(F,FNAME,10,FILEID);
RESET(F);
READ(F,CH);
(* AND ETC ••••••• *)

- 25 -

TRSLIB File routines

SETACNM
=======

PROCEDURE SETACNM(VAR logical: filetype;
physical: STRING); EXTERNAL;

The library procedure SETACNM serves the same purpose
as SET$ACNM but is simpler to use. The procedure takes
only two parameters, the Pascal logical file variable, and
the physical file or device name to associate with it.
Filetype is any legal Pascal file type. The physical name
parameter is a dynamic string. The SETACNM procedure
disposes this string before exiting, to recover the space.

If multiple file types are used in a program, the type
transfer operator(::) may be used to allow SETACNM to be
called with different file types. The external declaration
of SETACNM may specify one·of the file types used. The type
transfer operator must then be used with the other file types
to avoid a type mismatch error during the compile. Each of
the other files must be type transferred to the same type as
the one used in the declaration. The following example
illustrates the use of SETACNM.

(*$NO INOUT*) {eliminate the prompt for INPUT & OUTPUT}
PROGRAM sample;

VAR printer: TEXT;
out : FILE OF INTEGER;

PROCEDURE SETACNM(VAR f: TEXT; name : STRING); EXTERNAL;

BEGIN {main body of program sample}
{map logical file "printer" to the line printer}
SETACNM(printer,BLDSTR(':L'));
{no prompt will occur when REWRITE(printer) is executed}
REWRITE(printer);
{map logical file "out" to disk file "OUT/DAT"}
SETACNM(out::TEXT,BLDSTR('OUT/DAT'));
{no prompt will occur when REWRITE(out) is executed}
REWRITE(out);

END. {end of program sample}

- 26 -

TRSLIB Screen Routines

CLEARGRAPHICS

PROCEDURE CLEARGRAPHICS; EXTERNAL;

This procedure clears the screen with blanks.

CLEARSCREEN

PROCEDURE CLEARSCREEN; EXTERNAL;

This procedure does the same thing as CLEARGRAPHICS.

GOTOXY

PROCEDURE GOTOXY(X, Y: INTEGER); EXTERNAL;

This procedure positions the cursor on the screen
to the specified location. The value of X should be
in the range of Oto 79 and the value of Y should be
in the range of Oto 23. The top left corner of the
screen corresponds to X = 0 and Y = 0.

NOBLANK

PROCEDURE NOBLANK(REDISPLAY: BOOLEAN); EXTERNAL;

When the Model 4 video screen receives a carriage return
(#OD), the next line after the line containing the cursor
is erased. The NOBLANK procedure is used in conjunction
with input files which are connected to the keyboard to
prevent the next line from being erased when the <enter>
key is pressed. The NOBLANK procedure must be called
with the parameter REDISPLAY set to TRUE to prevent the
<enter> key from erasing the next line. NOBLANK must
be called before the input file is opened (RESET) in order
to have any effect. Therefore, the predeclared file INPUT
cannot be used unless the (*$NO INOUT) compiler option
is used to prevent ~t from being automatically opened.

When a program is executed from a JCL file, an input file
connected to the keyboard receives input from the JCL file
instead. To prevent this from occurring, NOBLANK(TRUE)
may be executed prior to opening the input file.

- 27 -

TRSLIB Screen Routines

READCURSOR

PROCEDURE READCURSOR(VAR X, Y: INTEGER); EXTERNAL;

This procedure returns the current position of the cursor
on the screen. Xis in the range of Oto 79 and Y is in
the range of Oto 23.

RSETPOINT

PROCEDURE RSETPOINT(X, Y: INTEGER); EXTERNAL;

This procedure clears (turns off) a graphics point
on the screen. The location of the point is specified
by the X and Y parameters. X should be in the range
of Oto 159 and Y should be in the range of Oto 71.

SETPOINT

PROCEDURE SETPOINT(X, Y: INTEGER); EXTERNAL;

This procedure sets (turns on) a graphics point on the
screen. The location of the point is specified with the
X and Y parameters. X should be in the range of Oto 159
and Y should be in the range of Oto 71.

TESTPOINT

FUNCTION TESTPOINT(X, Y: INTEGER) : BOOLEAN; EXTERNAL;

This function tests the state of a graphics point on the
screen. The location of the point is specified with the
X and Y parameters. X should be in the range of Oto 159
and Y should be in the range of Oto 71. The value
returned for the function is TRUE if the point is set
(turned on) and FALSE if the point is cleared (turned off).

- 28 -

TRSLIB Extended Memory Routine

EXTMEM

TYPE MEMOPCODE = (M RELEASE, M TEST, M RESERVE, M GET, M PUT);
PROCEDURE EXTMEM(OPERATION: MEMOPCODE; BANK: INTEGER; -

LOCALADDRESS, EXTENDADDRESS, BLOCKSIZE: INTEGER;
VAR STATUS: INTEGER); EXTERNAL;

The TRS-80 model 4 can contain up to 128k bytes of memory.
This procedure allows a Pascal program to use the top 64k of
memory to store data under program control. For this
procedure to work, at least one bank of 32k must be free
(not used by memdisk or some other program}. The parameter
BANK is used to specify the bank number in extended memory.
The two upper banks in a 128k machine are banks 1 and 2.

The operation code tells EXTMEM which operation to perform.
The EXTMEM procedure supplies all needed operations
including allocating and releasing banks of memory. In each
case the variable STATUS contains the result code when
EXTMEM returns. If STATUS is O, the operation completed
successfully, otherwise it is the returned status code from
the operating system. See the TRSDOS 6 Technical Manual
for details.

M RELEASE
-The bank of memory is released.

M TEST
-The bank is tested to determine its current state. If

status is 1 then the bank is busy (in use) and if status
is O then the bank is available.

M RESERVE
Reserves the selected bank of memory and makes it
available for use by EXTMEM. The selected bank is marked
as being in use.

M GET
Copys a block of data from extended memory to local
memory. EXTENDADDRESS is the address of the block in
extended memory. The addresses in extended memory range
from #8000 to #FFFF. LOCALADDRESS is the address for the
block in local memory. This address can be obtained by
use of the LOCATION function in Pascal. BLOCKSIZE is the
size of the block in bytes. The size of a data structure
can be obtained using the SIZE function in Pascal.

M PUT
-Copys a block of data from local memory to extended memory.

The parameters are the same as for M GET.

- 29 -

TRSLIB Extended Memory Routine

The following sample program illustrates use of EXTMEM. An
array is stored and retrieved from extended memory.

PROGRAM SHOWEXTMEM;
TYPE

MEMOPCODE = (M RELEASE, M TEST, M RESERVE, M_GET, M_PUT);
REAL_ARRAY = ARRAY[0 •. 120] OF REAL;

VAR
R : REAL_ARRAY;
STATUS: INTEGER;

PROCEDURE EXTMEM(OPERATION: MEMOPCODE; BANK: INTEGER;
LOCALADDRESS, EXTENDADDRESS, BLOCKSIZE: INTEGER;
VAR STATUS: INTEGER); EXTERNAL;

BEGIN
{ allocate bank 1 of extended memory}
EXTMEM(M RESERVE,l,LOCATION(R),#8000,SIZE(REAL ARRAY),STATUS)
IF STATUS<> 0 THEN WRITELN('unable to allocate bank l')
ELSE BEGIN

{ some code to enter data into the array should go here}

{ store data in extended memory}
EXTMEM(M PUT,l,LOCATION{R),#8000,SIZE(REAL ARRAY),STATUS);
IF STATUS<> 0 THEN BEGIN -

WRITELN('can''t store data in memory');
ESCAPE;
END;

{ retrieve the data}
EXTMEM(M GET,l,LOCATION(R),#8000,SIZE(REAL ARRAY),STATUS);
IF STATUS<> 0 THEN BEGIN -

WRITELN('can''t get data from extended memory');
ESCAPE;
END;

EXTMEM(M_RELEASE,l,LOCATION(R),#8000,SIZE(REAL_ARRAY),STATUS);
END;

WRITELN('test completed');
END.

- 30 -

RANDOM Access File Routines

Standard Pascal defines a file as a sequence and allows files
to be read or written only from beginning to end in sequential
order. Random Access files are files in which records can be both
read and written in any order.

The following Pascal procedures and functions are provided to
allow random access to records in a file. When using random
access files, these routines should be declared as external.
The following external declarations for the random file routines
use the following types.

filetype - A user defined type of the form:
filetype = FILE OF datatype

datatype - A predefined type such as INTEGER or a user defined type
such as datatype = RECORD fl: INTEGER; f2: REAL END;
The number of bytes in datatype must be between 1 and
256.

OPENRAND
========

PROCEDURE OPENRAND(VAR f:filetype; recordlen:INTEGER; pathname:STRING;
VAR status:INTEGER); EXTERNAL;

A random file must be opened prior to a read or write operation.
The OPENRAND procedure opens a random access file.

f - The logical Pascal name for the random file.
recordlen - The length in bytes of datatype. The size of datatype

may be determined using the SIZE function. For example,
recordlen:=SIZE(INTEGER) or recordlen:=SIZE(datatype).
The value of recordlen must be between 1 and 256.

~ pathname - The physical disk file name for the random file.
For example, pathname:=BLDSTR('DATABASE/DAT').

status - The returned error code status.

READRAND

A returned status of O indicates that the open was
successful. Otherwise, there was an error in
attempting to open the file.

PROCEDURE READRAND(VAR f:filetype; recordnum:INTEGER;
VAR dat:datatype; VAR status:INTEGER); EXTERNAL;

The READRAND procedure reads a record from a random file.

f - The logical Pascal name for the file.
recordnum - The random file record number.

Recordnum must be between O and 32767.
dat - The variable that contains the data read from

the file.
status - The returned error code status.

A returned status of O indicates that the read was
successful. Otherwise, there was an error in
attempting to read from the file.

- 31 -

RANDOM Access File Routines

WRITERAND

PROCEDURE WRITERAND(VAR f:filetype; recordunm:INTEGER;

VAR dat:datatype; VAR status:INTEGER); EXTERNAL;

The WRITERAND procedure writes a record to a random file.

f - The logical Pascal name for the file.
recordnum - The random file record number.

Recordnum must be between O and 32767.
dat - The variable which contains the data written

to the file.
status - The returned error code status.

CLOSE RAND

A returned status of O indicates that the write
was successful. Otherwise, there was an error
in attempting to write to the file.

PROCEDURE CLOSERAND(VAR f:filetype); EXTERNAL;

All random files must be explicitly closed.
The CLOSERAND procedure closes a random file.

f - The logical Pascal name for the file.

As with random files on any operating system, there are some
peculiarities about random files. For example:

(1) If you WRITE record number 1 and WRITE record number
100, and then read any record from 2 to 99, the
returned buffer will contain trash. The data will be
whatever was previously on the diskette, probably the
contents of an old file. This is because the operating
system does not keep that much context. It is up to
the user to keep track of unwritten records so they
are not read.

(2) All blocking is taken care of by the system.

(3) The standard functions EOLN, EOF have no meaning for
random files. The status codes as returned by the
above routines perform those functions where
applicable.

(4) The procedure OPENRAND is used to open a file for
reading and writing. Opening an empty file and
reading is perfectly legal.

- 32 -

RANDOM Acess File Routines

(5) Random file record numbers are defined from 0 •. 32,767.

(6) As with normal files, if a file is declared locally
within a procedure {ie. not passed in by reference) and
opened, once the procedure is exited, Pascal will
automatically close the file using the standard CLOSE
file routine for non-random files and position the EOF
mark in the directory at the last record read or
written. This may not be the correct position as
desired by the programmer. An explicit call to
CLOSERAND should be used to close the random file and
position the EOF. This will always correctly place the
EOF mark.

(7) You may declare a file to be:

(*WHERE XX IS ANY RECORD LENGTH FROM 1 TO 32,767*)
TYPE LINE= ARRAY(.l •. XX.) OF CHAR;
VAR F:FILE OF LINE;

Once the file has been opened, you may access it by
using the READRAND and WRITERAND external procedures
even if the file was not created by Pascal. There is
only one procedure for opening random files (no reset
and rewrite). You may read or write to a random file.

Random File Error Codes
Returned By Status Parameter

128 - PATH NAME IS NULL OR TOO LONG
129 - RECORD LENGTH TO LARGE
130 - FILE IS ALREADY OPEN
131 - FILE IS NOT OPEN

Any other returned code is an operating system code.
(See the Model 4 Disk System Owner's Manual)

If multiple random file types are used in a program, the
type transfer operator(::) may be used to allow the random
file routines to be called with different file and data types.
The declarations may specify one of the file and data types
used in the program. Any other files used must then utilize
the type transfer operator when calling one of the random file
routines. The other file and data types must be type
transferred to the same types used in the declarations to
avoid a type mismatch error during the compile. The following
example illustrates the use of the random file routines. The
status may be checked after each random file operation to
determine if an error occurred. The returned status will be 0
if no error is detected during an operation.

- 33 -

RANDOM Access File Routines

PROGRAM sample;
TYPE filel = FILE OF CHAR;

file2 = FILE OF INTEGER;
VAR fl : filel;

f2 : file2;
valuel, ch: CHAR;
value2, status, number: INTEGER;

PROCEDURE OPENRAND(VAR f: filel; length: INTEGER;
name: STRING; VAR status: INTEGER); EXTERNAL;

PROCEDURE CLOSERAND(VAR f: filel); EXTERNAL;
PROCEDURE READRAND(VAR f: filel; number: INTEGER;

VAR data: CHAR; VAR status: INTEGER); EXTERNAL;
PROCEDURE WRITERAND(VAR f: filel; number: INTEGER;

VAR data:· CHAR; VAR status: INTEGER); EXTERNAL;
PROCEDURE checkstatus(status INTEGER);
BEGIN

IF status<>0 THEN
WRITELN('* I/O ERROR: code number= ',status:3,' *')

END;
BEGIN

{open file "Fl/DAT"}
OPENRAND(fl,SIZE(CHAR),BLDSTR('Fl/DAT'),status);
{open file "F2/DAT"}
OPENRAND(f2::filel,SIZE(INTEGER),BLDSTR('F2/DAT'),status);
FOR number:= 0 TO 255 DO

BEGIN
{write the ascii character set to Fl/DAT}
ch:= CHR(number);
WRITERAND(fl,number,ch,status);
{write the ordinal values of the character set to F2/DAT}
WRITERAND(f2::filel,number,number::CHAR,status);
END;

FOR number:= 0 TO 255 DO
BEGIN
{read the ascii character set from Fl/DAT}
READRAND(fl,number,valuel,status);
{read the ordinal values of the character set from F2/DAT}
READRAND{f2::filel,number,value2::CHAR,status);
END;

checkstatus(status);
CLOSERAND(fl);
CLOSERAND(f2::filel)

{check error status}
{close Fl/DAT}
{close F2/DAT}

END.

- 34 -

STRING Function Routines

The following functions are provided for handling dynamic
string manipulations.
(See the appendix of the Reference Manual for information
about the type STRING).

FUNCTION LEN(S: STRING) : INTEGER;
This function returns the length of a string.

FUNCTION LEFT$(S: STRING; POSITION: INTEGER) : STRING;
This function returns the left portion of the string
ending at the specified position within the string.

FUNCTION RIGHT$(S: STRING; POSITION: INTEGER) : STRING;
This function returns the right portion of the string
starting at the specified position within the string.

FUNCTION MID$(S: STRING; POSITION, LENGTH: INTEGER) : STRING;
This function returns the portion of the string starting
at the specified position and including the number of
characters specified by length.

FUNCTION STR$(LENGTH: INTEGER; CH: CHAR) : STRING;
This function returns a string of the specified length
which is filled with the specified character.

FUNCTION ENCODEI(N: INTEGER) : STRING;
This function returns a string which is the character
representation of the specified integer.

FUNCTION ENCODER(R: REAL) : STRING;
This function returns a string which is the character
representation of the specified real. For single precision.

FUNCTION ENCODED(R: REAL) : STRING;
Sarne as ENCODER, but for double precision reals.

FUNCTION DECODEI(S: STRING) : INTEGER;
This function returns an integer number which is the binary
representation of the specified string.

FUNCTION DECODER(S: STRING) : REAL;
This function returns a real number which is the binary
representation of the specified string. For single precision.

FUNCTION DECODED(S: STRING) : REAL;
Sarne as DECODER, but for double precision reals.

- 35 -

STRING Function Routines

FUNCTION CHARACTER(S: STRING; POSITION: INTEGER) : CHAR;
This function returns the character at the specified
position in the string.

TYPE COMPAREVALUE = (LESS, EQUAL, GREATER);
FUNCTION CMPSTR(Sl, S2: STRING) : COMPAREVALUE;

This function compares the two specified strings
and returns an enumerated value based on the
comparison. The returned value is LESS if Sl<S2,
EQUAL if Sl=S2, and GREATER if Sl>S2.

FUNCTION CONC(Sl, S2 : STRING) : STRING;
This function returns a string which is the result of
the concatenation of the two specified strings.

FUNCTION CPYSTR(S: STRING) : STRING;
This function returns a copy of the specified string.
The typical use for this function is in the assignment
of one string variable to another. This prevents both
string variables from referencing the same string. EG.
STRING1:=CPYSTR(STRING2); will cause STRING! to refer
to a different copy of STRING2. STRING1:=STRING2; causes
STRING! to refer to the same copy of STRING2 and any changes
in the value of STRINGl would cause STRING2 to change also.

FUNCTION DELETE(S: STRING; POSITION, LENGTH: INTEGER) : STRING;
This function returns the string which results after deleting
a specified number of characters beginning at the specified
position in the string.

FUNCTION FIND(SUBSTRING, S: STRING) : INTEGER;
This function returns an integer number which points to the
start of the specified substring within the specified string.
If the string does not contain the substring then the returned
value is 0.

FUNCTION INSERT(SUBSTRING, S: STRING; POSITION: INTEGER) : STRING;
This function returns a string which is the result of inserting
the specified substring into the specified string at the
specified position.

FUNCTION REPLACE(OLDSTRING, NEWSTRING, S: STRING) : STRING;
This function returns the string which results after
replacing the old substring with a new substring within
strings.

- 36 -

Linking Assembly Language to Pascal

The LINKLOAD program may be used to link assembly language
subroutines to Pascal programs. Any available assembler may
be used to assemble the assembly language subroutine.

A Pascal program which uses an assembly language subroutine
should declare an external procedure to represent the assembly
language module. Choose a name for the procedure and declare
it with no parameters. {eg. PROCEDURE GRAPH; EXTERNAL;
could be used if you are linking to a subroutine to do
graphics). The CALL$ library procedure should be used to
call the assembly language subroutine. The first parameter
to CALL$ is the address of the assembly language subroutine.
Use the LOCATION function to obtain the address of the
externally declared procedure {eg. address:=LOCATION{GRAPH)).
The remaining parameters of CALL$ allow you to define values
for the Z-80 registers (See CALL$ in the TRSLIB library of
routines). The Pascal program should define values for the
registers that the subroutine uses as input parameters. All
register values are returned to the Pascal program through
the parameter list of CALL$ when a return instruction is
executed.

First compile the Pascal program and then follow these steps.

step 1) Origin the assembly language routine to load at
hexadecimal address #70FE and assemble it.
Note the size (in bytes) of the assembled routine.

step 2) Using the text editor, create a file containing the
following two lines.

P0075E
GxxxxyyyyyyyyPzzzzE

where

xxxx is the hexadecimal offset (in bytes) of the
entry point from the assembled origin.
If the origin is the entry point for the
routine, then xxxx is 0000.

yyyyyyyy is the name of the external procedure
declared in the Pascal program. The name
must be 8 characters long. If the name used
in the Pascal program is shorter, left
justify the name and pad with blanks. If the
name is longer, use the first 8 characters only.

zzzz is the hexadecimal size (in bytes) of the
assembled subroutine.

step 3) Load the assembled subroutine into memory.
This may be done with the operating system LOAD
command if the assembler creates /CMD files.

step 4) Execute the LINKLOAD program and first load in the
file created in step 2.

step 5) Next load in the Pascal program modules.
step 6) Run the program or Build a command file.

- 37 -

Linking Assembly Language to Pascal

Multiple assembly language subroutines may be linked to
a Pascal program. Simply make an external declaration for
each subroutine in the Pascal program and use the LOCATION
function to define the address parameters for CALL$.

Origin the first subroutine to load at address #70FE and
assemble it. Add the size of the assembled routine to
#70FE and use this as the origin for the second subroutine.
Assemble the second subroutine. Add the size of the
second assembled subroutine to its origin and use this as
the origin for the third subroutine. etc •..

Next create a file containing P0075E followed by the
names of the external procedures declared for each subroutine
and the sizes of each assembled routine. The routines must
be listed in the order that they were assembled.

P0075E
GxxxxyyyyyyyyPzzzzE

GxxxxyyyyyyyyPzzzzE

"assembled first"

"assembled last"

Use the operating system LOAD command to load all of the
assembled routines.

Execute the LINKLOAD program and load in the file created
above, followed by the Pascal object modules and either
run the program or build an executable command file.

- 38 -

Miscellaneous

Generating EOF from the Keyboard
--

When performing input from the keyboard, EOF can be
generated by the backquote character('). On the
Model 4, backquote is generated by SHIFT@.

PATCHES
=======

Normally, when a program built with the linking loader
terminates, the ending address and stack and heap used are
sent to the screen. After a program has been completely
debugged, this information is not needed. The following
patch will eliminate these messages. The patch should be
applied to a copy of the linking loader. After the patch is
applied, any command file built with the patched copy of the
linking loader will not print the stack and heap message.

1. Make a copy of the linking loader.

TRSDOS Ready
COPY LINKLOAD/CMD TO LINK/CMD

2. Apply the patch using the TRSDOS PATCH command.

TRSDOS Ready
PATCH LINK/CMD (X'6A98'=C3 13 6B)

- 39 -

----,--,a, ,,

_)

Chapter

1

2

3

4

5

6

7

8

9

10

11

TUTORIAL

Table of Contents

Introduction •••••••••••••••••••••••••••••••••
History of Pascal. Why Pascal?

Starting Concepts ••••••••••••••••••••.••.••••
Program, begin, end, write, writeln.

Data Concepts •••••••••••••••.••••••••••••••••
Variables,Types: integer, real, char, text
and boolean. Const section.

Advanced I/0 •••••.•••••••••••.•••••••••••••.•
Rewrite, write, writeln, reset, read, readln.

Statements •••••••••••••••••••••••.•••.•••••••
Assignment statements, compound statements,
multiply, divide, add, subtract.

Flow control ••..•.•••••••••••••••••••••••••••
For loop and case statement.

Decision testing .••••••••••••••...••..•••••••
Logical operators AND, OR, NOT. Relational
operators >, <, >=, <=, <>, = • Flow
control: IF, WHILE, REPEAT loop control
statements.

Procedures and functions •••••••••••.•••••.••.
Global and local variables, parameters,
scoping, nesting.

Advanced data types •.••••••••.•••••••••••••••
Structured data type: The.array, record. With
statements. User defined types: Enumerated,
subrange. File of TYPE.

Dyna1ni c memory .•••••••.•••••.•.••..•..•••••••
Pointer types, new, dispose.

Se ts ..••••••••••••••••••••••••••••••.••••••••
Declarations, set operations.

Page

2

6

9

13

17

23

27

32

41

52

59

Append i x A • • • • . • • • • • • • • • • • • • • • • • • . • • . • • • • • • • • 6 2
Information about the Database program.

Preface

This section is intended to be a tutorial for Pascal programming.
It was specifically designed as a learning aid for TRS-80 Pascal, and
is an intermediate level tutorial guide. It is assumed that the reader
has had some programming experience. This tutorial is an excellent
teaching aid for most other Pascals because TRS-80 Pascal is an
implementation of standard Pascal. Any extensions to the language are
covered in the TRS-80 Pascal Reference Manual. In this book the
standard Pascal referred to is defined by Pascal USER MANUAL AND
REPORT(2nd edition) by Kathleen Jensen and Nikalus Wirth
(Springer-Verlag, 1975). People with some exposure to BASIC or other
programming languages should have no trouble understanding the
explanations or example programs. It may be helpful to refer to the
TRS-80 Pascal reference manual, for additional details and answers.
This tutorial was designed to be as clear and precise as possible for
the newcomer to Pascal. It avoids all tricky and confusing
explanations, and in many cases includes program segments as examples.
This greatly reduces the clutter that often gets in the way of
learning computer languages.

The first chapter examines the major advantages of Pascal as a
general programming language. You may skip this section and begin
reading chapter two if you wish. However, there are many important
aspects about Pascal that are explained in chapter one. This tutorial
will provide a logical and structured approach to learning. After
all, that's what Pascal is all about.

- 1 -

Chapter 1

INTRODUCTION

Pascal was created by Professor Nicklaus Wirth at the Swiss
Technical Institute in Zurich Switzerland. It was first announced in
1965 when the most popular programming languages in use by the
computer industry were Fortran and Cobol. In teaching environments,
like Universities, Algol was a popular language for introducing
students to computer programming. Wirth felt that languages like
Fortran and Cobol were too loosely structured to promote good
programming habits to students. Algol, although more structured, had
significant drawbacks. Wirth decided to depart from normal teaching
practice and designed a new language patterned after Algol, to be his
new teaching language.

Pascal inherits the structured control statements of Algol and adds
powerful data structuring capability. The language was designed to
promote good programming practices and encourage clarity and
modularity in programs. Since the first implementation of Pascai on
the CDC-6600 computer system in 1971, Pascal has proven to be one of
the most popular programming languages in existence.

Pascal has the distinction of being created for the purpose of
making the development of computer programs a structured and logical
process. Pascal contains the best features of most high level
programming languages. Many college instructors at major universities
today use Pascal or Pascal like languages to teach structured
programming classes. Structured programming classes emphasize the use
of guidelines and rules for developing computer programs. Some of the
goals of structured programming are to encourage modularity and
functionality, promote good documentation and to generate programs
that have smooth flows of logic from the beginning to end. Programs
are usually developed in Pascal or an English like Pascal and then
hand translated to any available computer language such as Basic, for
execution.

Although the implementation language may not be highly structured,
the final program will be more clear and readable. Indeed, that is
exactly what most Pascal programmers do when they need to use other
languages. However, this is no replacement for implementing the
program in Pascal, as there are no translations for the rich and
powerful data structures and many other features that exist in Pascal.

- 2 -

Introduction Chapter 1

Data types and structures are two important features of the
language. They comprise one of the largest differences between
languages such as Pascal and BASIC. Most BASIC programmers are
familiar with the data types integer and real. A data type is simply
the kind of information that may be stored in a variable. Pascal
includes nine predefined types: char, integer, real, set,
file,array,record, boolean and text plus an infinite variety more, as
you may invent data types at will.

Data structure is another name for a variable type such as the
array. Pascal allows you to build new data structures as desired.
The use of record data structures can be very powerful when building
or maintaining data bases. With one simple output statement, an
entire data structure may be written to a file.

Variables are assigned storage only as needed during program
execution, thus reducing demands on memory. They also may have names
with as many characters in them as desired provided that the first 8
characters form a unique name. Long names don't require any more
storage space than short ones.

Extra spaces,tabs, and carriage control may be placed freely in a
source program, except in the middle of identifiers and character
strings. An identifier is defined to be a program, variable,
constant, type, procedure or function name. Comments may be inserted
anywhere spaces are allowed and are delimited by(**) or { } • These
features don't affect the speed or the size of the final program, and
greatly improve readability.

The concept of local variables is important. Variables declared in
this manner will have restricted access by other parts of the program.
This can prevent accidental changes in their values.

If there are a series of statements that need to be executed by
different sections of the program, they may be placed in a procedure
or function declaration. A procedure or function is just a collection
of program statements that may be called to perform their task at
various times during the program. Repetitiv~ programming may be
prevented by creating libraries of commonly used procedures or
functions. Parameters may be passed to these subroutines by "value or
reference".

- 3 -

Introduction Chapter 1

When a parameter is passed by reference, the actual parameter is
passed to the procedure, and if the procedure alters its value, the
parameter's value is changed in the rest of the program. When a
parameter is passed by reference, the argument must be a variable.

When a parameter is passed by value, what is passed is a copy of
the argument. If the procedure alters the parameter's value, the
value in the rest of the program is not changed. When a parameter is
passed by value, its argument may be a variable or any legal
arithmetic expression. Parameters passed by value can prevent
accidental changes in a value by procedures.

A careful use of procedures and functions will make the program
more readable and will eliminate branching statements that are
difficult to follow.

The logical operators AND, OR, and NOT along with the relational
operators: greater than">", less than"<", equal"=", not equal"<>",
greater than or equal">=", less than or equal"<=" are available in
Pascal. Statements like: IF(count < 10) and (not FAILURE) then "do
the following", make control statements very clear.

There are six statements in Pascal used for the flow of control.
Loop control is performed by the FOR, REPEAT and WHILE statements.
Conditions are tested with the IF and CASE statements. Branching is
accomplished by the GOTO statement.

Program execution speed may be of particular importance in certain
applications. TRS-80 Pascal programs execute between 10 and 50 times
faster than most interpreted Basics on the same computers. In fact,
they are significantly faster than many other Pascal implementations.

- 4 -

)

(

Introduction Chapter 1

As a general programming language, Pascal has the following
advantages.

(1)

(2)

(3)
(4)

(5)

(6)

(7)
{ 8)

(9)
(10)
(11)
(12)
(13)
(14)

.,
(15)

The powerful ability to build new data types and
structures as desired.
The control statements while, repeat, for, if,
case and goto.
The logical operators AND, OR, NOT.
The relational operators: equal to, less than,
greater than, less than or equal to, greater
than or equal, not equal to.
Recursive procedures and functions with
parameter lists.
The ability to insert blanks and comments
in the source program easily,and long
variable names, with no space or time penalty.
User controlled dynamic memory management.
Efficient memory management of
variables,functions and procedures.
Arrays of one or more dimensions.
Record data structures.
Sets and set operations.
Subrange and enumerated data types.
Named constants.
Read and write statements plus formatted write
statements •
Built in functions and procedures.

TRS-80 Pascal has the added advantage of being a full implementation
of standard Pascal, thus program portability is greatly enhanced.
These features, and the fact that programs generated by TRS-80 Pascal
execute much faster than programs generated by most BASIC or other
Pascal systems, make TRS-80 Pascal a logical choice as a general high
level programming language.

- 5 -

Chapter 2

STARTING CONCEPTS

At the simplest level of structure of a Pascal program are the
program, begin, and end statements. They may be thought of as the
outer shell that must be around all programs. The actual program is
placed between these begin and end statements. Example:

Listing 1.1

PROGRAM test;
BEGIN
END.

This is a completely legal Pascal program although it.actually does
nothing. We can modify it by adding a writeln statement to it.

Listing 1.2

PROGRAM test;
BEGIN

WRITELN(OUTPUT,'* Pascal is a very structured language.'};
WRITELN(OUTPUT, '* It promotes good programming habits.');

END.

The program will write to the file associated with
OUTPUT the following message.

* Pascal is a very structured language.
* It promotes good programming habits.

- 6 -

(
•

Starting concepts Chapter 2

The two writeln statements comprise the only action in the program.
The OUTPUT in the writeln tells the computer to write the message to
the file associated with the logical name OUTPUT. How this
association is accomplished is a computer dependent process, and is
explained in the System Implementation Manual. The string in single
quotes is a text string that may be composed of printable characters.
Notice two things about this program. First, the text string may not
be broken up across line boundaries, however blanks may be used freely
elsewhere to make the program more readable. Secondly, a semi-colon
is required after each writeln statement. Ih fact, semi-colons are
required after most Pascal program statements. For now, a good rule
of thumb is to always include a semicolon after legal Pascal
statements. The program name is test, but may be any identifier where
the starting character is a letter. The"·" must always occur after
the last END statement in the program.

Another output statement similar to the writeln statement is the
write statement. In the first sample program the two messages were
written to different lines on the file. The writeln statement caused
the file position pointer to reposition to the beginning of the next
line after each message was written. The file position pointer is
another name for the cursor when the file I/0 is directed to the
terminal. The write statement, does not reposition the cursor after
the message has been written. Instead, the cursor remains at the end
of the last message, and the next text will appear on the same line.
The cursor represents the point on a line where text will appear from
the next write statement.

PROGRAM test;
BEGIN

Listing 2.1

(* the purpose of this program is to give an example*)
(* of how to use the WRITE and WRITELN procedures *)
WRITE(OUTPUT,' * Now is the time');
WRITE(OUTPUT,' for all good programmers');
WRITE(OUTPUT,' to learn');
WRITELN(OUTPUT, 1 Pascal.');
(* The next statement starts on a new line*)
WRITELN(OUTPUT,' * You will become a Pascal magician.');
END.

- 7 -

Starting concepts Chapter 2

The following message will be written to output.

* Now is the time for all good programmers to learn Pascal.
* You will become a Pascal magician.

If you noticed, the text enclosed between the(**) did not affect
the program execution. They are simply comments by the programmer to
help clarify the logic in the program. Comments may be especially
helpful later when you have forgotten how the program functions. They
may be inserted anywhere except in the middle of identifiers or text
strings. An identifier is just another name for a program, variable,
constant, procedure or function name. Procedures and functions will
be explained later.

Tutorial Quiz 2.0

Cl) The first statement of a Pascal program must be the
statement.

(2) The statement will not move the cursor to
beginning of the next line.

(3) The statement will move the cursor to the
beginning of the next line.

(4) Most Pascal statements are followed by a

(5) The statement must be the last statement
of a program.

(6) Quoted _____ may not be broken up across
line boundaries.

Answers:

(1) program (2) write (3) writeln (4) semicolon

(5) end (6) strings

- 8 -

)

(

Chapter 3

DATA CONCEPTS

Variables

Variables in Pascal serve the same purpose as they do in most other
programming languages. They serve as storage areas for the
information that the programmer may wish to manipulate. These storage
areas are referred to by names that are chosen by the programmer.
Each variable name must start with a letter. It may be composed of
any combination of letters and digits, although in many Pascal
implementations, the first eight characters must form a unique name
within the program.

Reserved words

There are certain words in Pascal that have special meanings.
These words are called reserved words, and variables may not have
these names. For a complete list see the TRS-80 Pascal Language
Reference Manual.

Variable types

Variables must have associated with them a specific type. The type
is the kind of information that is going to be stored in that
variable. For example, the variable "taxnumber" may represent a
business tax number. This taxnumber might take on the numerical value
of 1 to 100 at any time in the program. This would be an example of
the type, integer.

Declaring variables

All variables must have their specific type declared in a special
section of Pascal programs c~lled the var section. There are five
predefined variable types in Pascal that we will concern·ourselves
with at this time. They are integer, real, char, text and boolean.
The var section of a program consists of the word VAR followed by any
number of variable declarations. A variable declaration has the form
of variable name: variable type; • A colon separates the variable
name from the variable type, and a semicolon must follow each variable
declaration. ·

- 9 -

Variables and types Chapter 3

Integer variables

The type integer may be used to represent whole numbers. The
minimum and maximum size allowed by Pascal is computer dependent, but
on many micro computers they range from -32768 to +32767 • The
following is a program example of a variable declared as an integer.
Notice that a colon is required to separate the variable name
taxnumber, from the variable type, integer.

Real variables

Listing 3.1

PROGRAM test;
VAR
taxnumber:INTEGER;
BEGIN
END.

The type real may be used where a variable must store numbers that
may have fractional or decimal values. The numbers 2.98, 3.047,
0.0009 , 0.009 and 37.0998 are all examples of real numbers. Real
numbers must start with a digit and may contain a decimal point. If a
decimal point is present, a digit must follow the decimal point. The
numbers .009, 10. are illegal real numbers, as there is no digit
before and after the decimal point. The size and precision of real
numbers are computer dependent. Real variables may represent the
dollar selling price of some product by a store, or an entry into your
checkbook. They are declared as follows:

Listing 3.2

PROGRAM test;
VAR

taxnumbr:INTEGER;
cost :REAL;

BEGIN
END.

Note that the indentation of the declaration section does not
affect the execution of the program.

- 10 -

)

Variables and types Chapter 3

Char variables

If a variable is declared as a char type, then it may represent a
single character such as the character 'A'. In Pascal, the characters
may be composed of letters, digits and other special symbols. If a
digit is to be referred to as a character instead of a number, it is
enclosed in single quotes like the character string was in program
listing 2.1. The only difference is that a char variable may only
represent one character at a time.

Text variables

Variables declared to be of the type text are used to direct output
or input information to files on disks, or to other devices. Text is
predefined to be a special file of char.

Boolean variables

A variable declared as the type boolean may only have two values.
They are true and false. This kind of variable is primarily used in
flow control statements. Boolean variables are typically used in the
WHILE, IF or REPEAT control statements. These statements will be
covered in later chapters.

Const section

Often, specific variables will have fixed values during program
execution. In this case you may declare these values as constants.
In Pascal, they are declared in the CONST section. The const
declaration section is placed between the program and the first begin
statement of the program. Constants may have names like variables do.
In fact their names should reflect their nature. Constants may be
integers, real numbers or a text string. A text string constant is
any character string enclosed between single quotes. A string
constant generally may be used anywhere a packed array[l •• n]of char
variable may be used. This variable type will be explained later.

- 11 -

Tutorial Quiz 3.0

(1) ____ serve as storage areas for information
that the programmer may wish to manipulate.

(2) Variable types are declared in the
section of the program. --

(3) Five predefined type of variables in
Pascal are ____ , ____ , ,

,

(4) The syntax of a variable declaration is:
var variable name: ___ ;

Chapter 3

(5) Variables declared as the type _____ may take
on the value of letters, digits and other
special symbols.

(6) A variable declared to be of the type
is used to direct I/0 to files.

(7) A value that is fixed in the program and will
not change may be declared as a constant
in the ____ section of the program.

Answers:

(1) Variables (2) type (3) char, integer, boolean, real, text

(4) type (5) char (6) text (7) canst

- 12 -

Chapter 4

ADVANCED I/O

Procedures rewrite, writeln.

Can you guess what this program will do if you run it?

Listing 4.1

PROGRAM alpha;
CONST

pi = 3.141597;
maxtax = 2000;
tstring =' I am a Pascal Wizard';

VAR
out :TEXT;
max :REAL;
number:INTEGER;

BEGIN
REWRITE(out);
WRITELN(OUTPUT,'Program starting execution.');
WRITELN(' The value pi= ',pi);
WRITELN(' The value maxtax = ',maxtax);
WRITELN(tstring);
WRITELN(out,'This program tests file I/O');
WRITELN(OUTPUT,'Program finished.');

END.

From example 2.1 you already know that the first and last writeln
statement will cause the program to direct the messages to the file
associated with output. The following message will be written to
output.

Program starting execution.
The value pi= 3.14159
The value maxtax = 2000
I am a Pascal wizard

Program finished.

The message, "This program tests file I/O", will be written to the
file associated with out.

ADVANCED I/0 Chapter 4

Examine the first writeln statement. In the specific case where
the first argument for the writeln statement is output, the user is
not required to declare output in the var section as with other files.
Notice also that there is no output argument in the second,third and
fourth writeln statements. In Pascal, it is not required to have
output as an argument. Output is a default argument. Ie; the
statements writeln(output,• help'); and writeln(' help'); are
equivalent in Pascal. In Pascal the write and writeln statements may
have multiple arguments. The first argument always directs the I/O
operation to a specific file except for the case previously explained.
In listing 2.1 the two arguments were output and a text string.
Constants and variables may also be arguments. The values of the
variables and constants will be written in the same order as they
appear in the argument list.

Rewrite statement

The purpose of the rewrite(logical filename) statement is to open a
file on some hardware device, and ready it for writing. Note that the
previous contents of any file used in a rewrite statement will be
lost. The specifics of how to associate the logical filename in
parentheses with a physical filename is implementation dependent~and
is explained in the TRS-80 Pascal System Implementation Manual.
Standard Pascal does not require the file output to have a rewrite
performed on it before it is written to. Output is the only file in
Pascal that does not require a rewrite before it is written to. It is
predeclared to be a textfile by Pascal.

Reset statement

The purpose of the reset statement is to ready a file for reading to
a program. A reset (logical filename) statement will open the
physical file associated with the logical filename and read the first
line. In TRS-80 Pascal, the first line is not read until required by
an EOF or EOLN function call. These functions will be explained
later. All files that are to be used for reading must be reset,
except Input. Input is a predeclared textfile within Pascal.

Read, readln statements

The read statement is similar to the write statement, except that
its purpose is to read information into the program instead of to
write information. The read statement will read a value into a
variable from a file and will leave the cursor at the last character
read.

- 14 -

ADVANCED I/0 Chapter 4

Specific reads on the same file will cause a series of inputs to
occur from the same line. When a read is performed on an integer or
real quantity in a text file, the read will start scanning the line
until any non-blank character is found. The next contiguous non-blank
characters will be interpreted by the read as the input value. If
another read is performed on the same file, the read procedure will
scan forward and repeat the process, until the end of line is reached.
If the end of line is reached before any integer is found, the scan
will continue at the beginning of the next line.

The readln statement performs the same function as the read
statement, except that the cursor will always be positioned to the
beginning of the next line after all inputs to the read statement are
satisfied, even if the end of line has not been reached. The readln
statement is not required to have arguments. The effect of such a
readln is to position the cursor to the beginning of the next line
without reading any values. The arguments allowed for the read
statement are variables. As with OUTPUT in the write statement, INPUT
is predeclared to be a text file. If a read statement does not have a
file argument, it is assumed to be the predeclared file INPUT. .

Try running the following program. It will give you a little more
experience performing program I/0.

Listing 4.2

PROGRAM testIO;
(*Purpose-the purpose of this program is to
(* demonstrate I/0 to a text file using integer and
(* real input variables.
VAR

taxnumbr,emnumber
tax
ID

BEGIN

:INTEGER;
:REAL;
:PACKED ARRAY[l .• 72]0F CHAR;

*}
*)
*)

WRITELN(OUTPUT, '* Enter your federal tax number: ');
READLN(INPUT,taxnumbr);

END.

WRITELN(OUTPUT,'* Enter your dollar tax total: ');
READLN(INPUT,tax);
WRITELN

(OUTPUT,'* Enter your employee number,a space,');
WRITELN(OUTPUT,' followed by your business ID number:');
READ(INPUT,emnumber);
READLN(INPUT,ID);
WRITELN(OUTPUT,' Tax number = ',taxnumbr);
WRITELN(OUTPUT,' Dollar tax total= ',tax);
WRITELN(OUTPUT,' Employee number = ',emnumber);
WRITELN(OUTPUT,' Business I.D. = ',ID);

- 15 -

ADVANCED I/O Chapter 4

The following I/0 will occur at the terminal if the filename
associated with input and output is the local terminal.

* Enter your federal tax number:
32000 <user input>
* Enter your tax total:
2345.98 <user input>
* Enter your employee number,a space,
followed by your business ID number:
23455 4669 <user input>
Tax number = 32000
Dollar tax total = 2345.98
Employee number = 23455
Business I.D. = 4669

Tutorial Quiz 4.0

Cl) The predefined file variables-------~ and __ _
are not required to be declared in the var
section as the type text.

(2) The first argument in a ___ , _____ ,
, ____ statement directs I/O to a file

_o_r_d_e_v ice.

(3) The purpose of the statement is to
open a file and ready l. t for writing.

(4) The purpose of the statement is to
open a file and ready it for reading.

(5) After a , the previous contents of
the file are lost.

(6) A ___ or ___ statement will cause the
cursor to move to the next line after execution.

Answers:

(1) input, output (2) read, readln, write, writeln

(3) rewrite (4) reset (5) rewrite (6) readln, writeln

- 16 -

1
I

,)

Chapter 5

STATEMENTS

Assignment statements

From previous examples, you know how to read a value into a
variable and how to write it. Now you will learn how to alter its
value within the program. The statement that does this is the
assignment statement. It allows you to set a variable's value equal
to an expression. An expression may be a variable name or a series of
arithmetic or boolean operations. A simple assignment statement takes
the form of variablenamel := variablename2; • The" :="operator
causes the variable on the left hand side to become equal to the value
of the variable on the right hand side.

Listing 5.1

Program MAGIC;
VAR

intrate,principle,anint,calc:REAL;
BEGIN

WRITELN(' ******* Interest rate problem*******');
WRITELN(' Enter annual interest rate:');
READLN(intrate);
WRITELN(' Enter the principle amount of loan:');
READLN(principle);
calc:= intrate * principle;
anint:=calc;
WRITELN(' Your annual interest payment= ',anint);

END.

Arithmetic operators

In the program listing 5.1 you may have noticed the statement
"calc:= intrate * principle" • The"* "is the multiply operator in
Pascal. There are seven arithmetic operators in Pascal with
precedence as follows:

- 17 -

Statements Chapter 5

OPERATOR PRECEDENCE TABLE 5.1

Symbol

*
I

div

mod

+

Precedence

Cl) Highest

(2)

(2)

(2)

(2)

(3) Lowest

(3) Lowest

Operator precedence

Description

Unary operator. Negates a single
argument.

Multiplies two arguments

Divides two real arguments

Divides two integer arguments

Divides two integer arguments and
keeps the remainder as the result.

Adds two arguments

Subtracts two arguments

If an arithmetic expression is composed using different operators
without any parentheses, the order of evaluation is based on the above
table, where operations with the highest precedence are performed
first. Any operations at the same level are performed in left to
right order.

Parentheses

In Pascal, this natural order of precedence may be altered by
enclosing a portion of the expression in parentheses. The parentheses
has the highest precedence of all operators. Parentheses may be
nested to alter the evaluation sequence as desired. In this case,
operations buried deepest within are evaluated first.

- 18 -

Statements Chapter 5

The following program will illustrate the use of the arithmetic
operators and parentheses.

Listing 5.2

PROGRAM math;
CONST

VAR

fudge = 100;
lossacre = 0.50;

acsoy,acgreen :INTEGER;
prsoy,prgreen :REAL;
profit,overcost :REAL;

BEGIN
WRITELN(OUTPUT,' **** Farmers profit analysis program**** '};
WRITELN{OUTPUT, '* Please enter the following information:');
WRITELN(OUTPUT,'* Acres planted in soy beans=');
READLN(INPUT,acsoy};
WRI'rELN{OUTPUT, '* Profit per acre of soybeans = ');
READLN{INPUT,prsoy);
WRITELN(OUTPUT, '* Acres planted in green beans='};
READLN(INPUT,acgreen);
WRITELN(OUTPUT, '* Profit per acre of green beans= ');
READLN(INPUT,prgreen);
WRITELN(OUTPUT,'$$$ COMPUTATION IN PROGRESS$$$');
profit:= acsoy * prsoy + acgreen * prgreen

- (fudge/ (acsoy+acgreen) * lossacre);
WRITELN(OUTPUT, 'Your computed profit is');
WRITELN(OUTPUT,profit);

END.

The profit calculation uses parentheses to alter the normal
operator precedence. If the normal precedence is followed, the
calculation will yield the wrong result.

- 19 -

Statements Chapter 5

The order of evaluation without parentheses would be:

Cl) acsoy and prsoy multiplied.
(2) acgreen and prgreen multiplied.
(3) fudge/ acsoy
(4) acgreen * lossacre
(5) resultl + to result2
(6) results - result3
(7) result4 + result 6

The desired result is obtained by including the parentheses as in
the example. The apparent order of evaluation would be:

profit:= acsoy * prsoy + .acgreen * prgreen
-(fudge/ (acsoy+acgreen) * lossacre) ;

Cl) acsoy added to acgreen
(2) fudge/ resultl
(3) result2 * lossacre
(4) acsoy * prsoy
CS) acgreen * prgreen
(6) result4 + results
(7) result6 - result3

If two numbers are operated on, the normal result will have a type
that is dependent on the argument types. The variable types required
to store the results of specific operations are summarized in the
following table.

* multiply real * integer = real result.
integer * real = real result.
real * real = real result.
integer * integer = integer result.

I real divide real I real = real result.
real/integer = real result.
integer/real = real result.
integer/integer = real result

- 20 -

)

Statements Chapter 5

div integer divide integer div integer= integer result.
integer arguments only.

mod integer mod integer= integer
(integer div integer= remainder)

+ add integer + integer = integer result.
integer + real = real result.
real + integer = real result.
real + real = real result.

subtract integer - integer = integer result.
integer - real = real result.
real - integer = real result.
real - real = real result.

Compound statements

If a series of program statements are surrounded by a begin and end
statement, then the enclosed statements are considered a compound
statement. Compound statements are normally used as arguments to
control structures such as the WHILE and IF. A compound statement may
occur by itself anywhere in a Pascal program, however, its meaning
would be the same as if the begin and end were not present. The
important thing to remember about Pascal is that anywhere a single
statement may be used, a compound statement may be used.

- 21 -

Tutorial Quiz 5.0 Chapter 5

(1) is the symbol for the assignment operator.

(2) If a series of statements are surrounded by a begin and
end, it is called a _____ statement.

(3) Operator precedence refers to the order in which an
is evaluated.

(4) The natural order of expression evaluation may be
altered by using -------

(5) The
first.

with the highest precedence will be evaluated

(6) Operators that have the same level of precedence will
be evaluated in ___ to ___ order.

(7) After executing the following Pascal statement, variable
x will have the value

Answers:

PROGRAM QUIZ;
VAR

x:integer
BEGIN

x:=4 + 5 * 2;
END.

Cl) := (2) compound (3) expression (4) parentheses

(5) operator (6) left, right (7) 14

- 22 -

)

Chapter 6

FLOW CONTROL

FOR statements

If you wish to execute a series of statements a predetermined
number of times, you should use the FOR statement. The for statement
will cause a single or compound statement to execute a specific number
of times. Examine the following example.

Listing 6.1

PROGRAM math;
CONST

fudge = 100;
lossacre = 0.50;
prsoy = 195.98;
prgreen = 200.56;

VAR
acsoy,acgreen,nofields,select,fieldnumber:INTEGER;
profit,overcost: REAL;

BEGIN
WRITELN(OUTPUT,'* Farmers planting analysis program* ');
WRITELN{OUTPUT,'* How many fields do you have?');
READLN(INPUT,nofields);
FOR fieldnumber := 1 to nofields DO

BEGIN

END.

WRITELN(OUTPUT,'* For field number ',fieldnumber);
WRITELN(OUTPUT,'* Acres planted in soy beans=');
READLN{INPUT,acsoy);
WRITELN(OUTPUT,'Acres planted in green beans=');
READLN(INPUT,acgreen);
profit:= acsoy * prsoy + acgreen * prgreen

- (fudge/ {acsoy+acgreen) * lossacre);
WRITE(OUTPUT, '* Your computed profit for field number

,fieldnumber,' is');
WRITELN(OUTPUT,profit);
END;

- 23 -

Flow control Chapter 6

The loop control variable is "fieldnumber" • This variable is
declared as an integer. When the loop starts its execution,
"fieldnumber" takes on the value of one for the first pass through the
loop. Successive loop iterations cause this value to be incremented
by one until its value is greater than "nofields" • At this point,
the loop will stop and control will be passed to the next statement in
the program. The lower and upper bounds on the loop control variable
do not have to be variables or constants, but may be arithmetic
expressions. The expression is evaluated one time, at the beginning
of the loop. The upper bound must be greater than or equal to the
lower bound for the loop to execute at least once.

A variation on the for loop just described causes the loop control
variable to be decremented by one instead of incremented by one. The
syntax for this is the same as above except that the "to" in the for
statement is replaced with "downto" • The initial upper bound on the
loop control variable must be larger than or equal to the lower bound
for the loop to execute at least once.

Case statement

The case statement is used as a selection control statement. It is
used when you need to execute one statement from a list of statements.
Notice the following program. In front of every statement in the
list, is a case selector constant. This selector value must be of the
same type as the case selector variable, and may be composed of a list
of values for each statement it precedes. The "end" must follow the
last statement in the list in o~der to terminate a case statement. We
will be concerned with selector variable of type integer at this time.

- 24 -

)

Flow control

Listing 6.2

PROGRAM moonphase;
CONST

VAR

dayphcorr = 10;
lencycle = 28.3;

daynumber,intphase :INTEGER;
startphase,phase,month,day,year :INTEGER;
realphase,phasecorrection :REAL;

BEGIN

Chapter 6

WRITE(OUTPUT,' *** Lunar Phase calculation program');
WRITELN(OUTPUT,' ***');
WRITELN(OUTPUT,' Enter the month/day/year:');
READLN(INPUT,month,day,year);
startphase := ((year-78) * 365) + dayphcorr;
CASE month of

1: daynumber:=l;
2: daynumber:=32;
3: daynumber:=60;
4: daynumber:=91;
5: daynumber:=121;
6: daynumber:=152;
7: daynumber:=182;
8: daynumber:=213;
9: daynumber:=243;

10: daynumber:=274;
11: daynumber:=304;
12: daynumber:=334;

END; (*case*)
startphase := startphase + daynumber + day;
realphase := startphase / lencycle;
intphase := TRUNC(realphase);
realphase:=realphase-intphase;
phase:=realphase * lencycle;
CASE phase OF
1,2,3,4,5,6,7

8,9,10,11,12,13,14

15,16,17,18,19,20,21

22,23,24,25,26,27,28

: WRITELN(OUTPUT,
'The moon is in its first quarter.');

: WRITELN(OUTPUT,
'The moon is in its second quarter.');

: WRITELN(OUTPUT,
'The moon is in its third quarter.');

: WRITELN(OUTPUT,
'The moon is in its fourth quarter.');

END;
END.

(*case*)
(*PROGRAM*)

- 25 -

Flow control Chapter 6

The purpose of the program in listing 6.2 is to compute the phase
of the moon. Several examples of case statements are used with
differing case selector lists. The calculations are based on a known
starting phase of the moon at some past day,and year. The initial
startphase calculation yields the number of days since this known
starting date as a function of the number of years, corrected for the
starting phase of the moon. The remainder of the calculations simply
adjust this value to yield the whole number of days since the known
starting phase, then divide the resultant number of days by the lunar
cycle length in days. This program does not consider the effect of
leap years. Notice that mixed mode expressions consisting of real and
integer arithmetic are used throughout the calculations. A careful
study of the previous type result tables will verify their validity.
Notice that the value of realphase is used as an argument for the
TRUNC function. This is a predefined function available in Pascal
that will truncate a real number and store the result in an integer.

Tutorial Quiz 6.0

Cl) The statement is used to make a single or
compound statement execute a specific number of
times.

(2) In successive loop iterations in a ____ loop,
the loop control variable is either incremented
by one or decremented by one.

(3) The ___ statement is used to select a
statement to execute from a list of statements.

(4) The "downto" and "to" are elements of the
statement.

(5) An must follow the case statement.

Answers:

Cl) for (2) for (3) case (4) for CS) end

- 26 -

Chapter 7

DECISION TESTING

Often, it is necessary to make tests to determine the flow of
control in a program. The case statement is a simple example.
However, it may become necessary to perform more complex tests than
the case statement was intended for. Pascal has a powerful set of
logical and relational operators that make such testing easy. Most
logically complex programs use relational testing for advanced
control. The logical and relational operators are as follows:

Logical operators

and - Will evaluate two boolean expressions, then
perform a logical "and" on them, returning either
a boolean "true" or "false".

or - Will evaluate two boolean expressions, then
perform a logical "or" on them, returning either
a boolean "true" or "false".

not - Will change a boolean value to the opposite
value.

Relational operators

It is often necessary to compare several variables for equality in an
expression to determine the flow of control. This may be accomplished
by relational testing. There are six relational operators in Pascal,
all with equal precedence. Their precedence may be altered just like
the arithmetic operators by the use of parentheses. If the relational
test fails, a Boolean False is returned by the expression. If the
test succeeds, then a true is returned. The dperators are as follows.

=
>
>=

Equal to
Greater than
Greater than or equal to

- 27 -

<>
<
<=

Not equal to
Less than
Less than or
equal to

Decision testing Chapter 7

There are two constructs in Pascal that often use relational
testing for loop control. They are the while and repeat statements.
Almost all goto and other branching constructs may be replaced with
these statements. Unlike the goto statement, these statements force
simple and clear design of loops, often eliminating the unclear
conditions for exiting. Usually, if it is not possible to formulate a
loop construct using the while, repeat and if statements, instead of a
goto, it is because the loop itself has not been properly defined.
Ie; the programmer does not have the specifics clear in his mind.

If statement

A typical use of a relational test is illustrated in the if
statement. In the following example let the variables "Monday" and
"October" be of the type boolean with their values both being true.

Listing 7.1

PROGRAM testIF;
VAR

Monday,October:BOOLEAN;
BEGIN

Monday:=true;
October:=true;
IF October AND Monday THEN

WRITELN(OUTPOT,'Its October and Monday')
(*notice no semicolon after the previous statement*)
ELSE WRITELN(OUTPUT,'Date unknown.');

END.

This program will print the message, "Its October and Monday" since
October is true, and Monday is true. This example illustrates the use
of the" if then else" statement in Pascal. If the expression is
evaluated to be true, the first action will be taken. If it is false,
the statement following the else will execute. The statements may be
simple or compound. Notice that a semicolon may not precede the else
in the IF statement.

- 28 -

Decision testing Chapter 7

Notice the following example where "income" has been declared as
the type integer and "president" is of type boolean.

IF (income> 32000) AND NOT(president) THEN
BEGIN
WRITELN{OUTPUT,'You are being audited by the IRS.');
WRITELN(OUTPUT,'Please justify your deductions.');
END;

The value of the expression will be true if the integer value of
"income" is greater than 32000 and the boolean value of "president" is
false. When the value of "president" is false, the not operator will
reverse its value to true. This type of expression is one of the
strengths of Pascal. With a little experience, you will find it easy
to write expressions. This greatly improves the readability of
logically complex programs. Arguments for relational operators must
be of the same type. In the example, "income" must be declared as an
integer type for the statement to be valid in Pascal. For now, we
will concern ourselves with integer and boolean comparisons.

While statement

The while forces a statement to execute while some condition is
satisfied. The condition is the value of a boolean variable or the
boolean result of some expression. Some computation inside the loop
should change one of the variables used in the test to cause the
relational test to fail, terminating the loop. The while statement
will perform the test at the beginning of every loop. The while loop
might never execute any of the enclosed statements as the initial test
occurs before the loop is entered. In the next example, cnt, cost and
unitprice are declared as type integer, and underbudget is of type
boolean. Notice the following example syntax.

- 29 -

Decision testing

cnt:=0;
underbudget:=true;
WHILE (cnt < 20) AND (underbudget) DO

BEGIN
cnt:= cnt + l;
cost:= cnt * unitprice;

Chapter 7

IF (cost> 200) THEN underbudget :=false;
END;

The previous example will execute as a conditional loop instead of
a predetermined number of times as in the for loop. When "cnt" gets
incremented to twenty one, or cost exceeds 200, the loop will.
terminate. Note that the "cost> 200" test could have been put in the
while expression just as easily.

Repeat statement

Another statement similar to the while is the repeat. A statement
or series of statements will be repeated until an expression becomes
true. The difference between the while and repeat may not be obvious.
The difference is that the repeat statement will always execute at
least once because the relational test occurs at the end of the loop.
The use of repeat sometimes causes problems for new programmers, as
there may be cases where you do not want the loop to execute at all,
however it will always execute at least once. An example of repeat is
as follows:

cnt:=0;
underbudget:=true;
REPEAT

cnt:=cnt + l;
cost:= cnt * unitprice;
inventory:=inventory +l;
IF (cost> 200) then underbudget:=false;

UNTIL(cnt >= 20) OR NOT(underbudget);

- 30 -

Decision testing Chapter 7

Notice that the test was changed to use the OR operator instead of
the and operator. This is simply due to the different context of the
two statements. There is no begin or end required. The stqtement(s)
to be executed are simply placed between the repeat and until. What
happens to this loop if the initial value of "unitprice" is great~r
than 200? The loop will terminate on the first iteration, but alters
the value of "inventory". This might not be the desired result and
could cause an illegal entry into the inventory. In this situation,
the while statement would be the proper choice of a looping construct,
as it would detect this before "inventory" is changed.

Tutorial Quiz 7.0

Cl) The logical operators in Pascal are: and,

(2) The and operator will return a value of , if the
value of the both expressions it is evaluating is true.

---(3) The or operator will return a value of
the expressions it is evaluating is true.

(4) The not operator will reverse the value of a
variable or expression.

, if one of

(5) The IF statement will execute the else portion of the
statement, if the value of the expression is

(6) The while statement will execute as long as the boolean
result of the expression is

(7) The repeat will execute all statements between the
repeat and until as long as the expression is

Answers:

(1) or, not (2) true (3) true (4) boolean (5) false

(6) true (7) false

- 31 -

Chapter 8

PROCEDURES AND FUNCTIONS

Procedures

In the introduction, one of the claimed strengths of Pascal was
that it promotes modularity. Modularity is another name for
organizing a program into sections, each of which performs a specific
function, instead of one large block of continuous statements. One of
the reasons that Pascal programs may have a high degree of modularity
is that the language was designed with procedures and functions in
mind. In a few languages, they are not even supported, and in others,
passing parameters can become a major chore. This is not the case in
Pascal, as several different m~thods are available to pass data to
subroutines that need it. Furthermore, there are rules about how
procedures may call other procedures and access their internally
defined variables. These scoping rules, as they are called, may seem
a little restrictive, but they provide valuable protection. This
partitioning of the problem eventually decreases program size and
improves readabilty to the programmer or anyone who must maintain it.
A simple way to decide whether a procedure or function should be used
is to examine the problem and to decide if there are a series of
statements that need to be executed several times, and in different
parts of the program. The identified program segments should be
placed in a procedure or function.

Procedure structure

Procedures may be thought of as complete sub-programs that have
data passed to them as needed. In many descriptions written about
Pascal, they are often called one of the basic blocks, and in this
manual, a block will be considered to be a program, procedure or
function. The structure of a procedure is the same as for the
original program with a few exceptions. The data that is passed to a
procedure block is passed through a parameter list. The parameter
list is placed after the procedure name. Examine the following
program.

- 32 -

Procedures and functions

Listing 8.1
PROGRAM INSTRUCTIONAL;
VAR

number :INTEGER;
posnumber:INTEGER;
legal :BOOLEAN;

Chapter 8

PROCEDURE readn (VAR number: INTEGER; VAR legal: BOOLEAN);
(* The purpose of this routine is to read *)
(* a positive number from a file in a *)
(* character format and convert it to an integer*)
(* format. *)
VAR

loopcontrol,forcntr,inc:INTEGER;
string :ARRAY [l .• 72]OF CHAR;

BEGIN
FOR loopcontrol :=l to 72 DO string[loopcontrol]:=' ';
loopcontrol :=0;
WHILE NOT EOLN(INPUT) DO

BEGIN
loopcontrol := loopcontrol + l;
READ(string[loopcontrol]);
IF{string[loopcontrol]=' ')THEN

{* Remove all leading blanks from array*)
loopcontrol:=loopcontrol - 1;

END;
number:=0;
inc:=1;
FOR forcntr :=loopcontrol DOWNTO 1 DO

BEGIN
number:=number+({ord(string[forcntr])-ord{'0'))*inc);
inc : = i n c* 10
END;

IF (number< 0) THEN
BEGIN
legal := false;
WRITELN('* Error - Illegal entry. Try again. ');
END

ELSE legal:= true;
END; (*procedure readn*)

BEGIN
legal:=false;
WHILE NOT legal DO

BEGIN
WRITELN('Enter any positive

READN{posnumber,legal);
END;

END.

- 33 -

number:');

l.

Procedures and functions Chapter 8

The purpose of the program 8.1 is to read a positive integer in
from the file input and to check for illegal entries. This declared
procedure represents a typical use for a procedure, since it might be
called several times, from different places in the program. Notice
the eoln(input) • Eoln is a boolean function that will return a true
value when an "end of a line" of the file specified in the parentheses
is reached. As soon as the cursor is moved from this position by
another readln, it's value becomes false again. Notice also the
function call to ORD. ORD is a Pascal function that returns the
internal integer representation of a character.

Since there is only one copy of this procedure in memory no matter
how many calls there are, a considerable amount of memory space can be
saved. In fact, a procedure's variables do not occupy storage space
until the procedure is actually called.

The procedure declaration comes after the const and var section,
and before the first begin statement of the block in which it resides.
Remember, a block may be a main program, procedure or function.

Local variables

Local variables are declared in a particular procedure, function
or program. For example, the variable "forcntr" declared in
procedure readn, is local to "readn" and is accessible from "readn"
only. However, notice the variable "number" declared in the main
program block. Inside the procedure "readn" , the variable "number"
may be used without declaring it, since it appears in the calling
program. This means that if "readn" is called by the main program and
"readn" alters "number", then upon return to the main program,
"number" will have the altered value. This side effect can be avoided
by declaring "number" again in the procedure block. Then all
references to "number" will refer to a different variable. The use of
global variables should always be kept to a minimum, so as to minimize
any accidental changes in their values.

Procedure parameters

An alternate method of changing global variables within a procedure
is to pass them as parameters in a parameter list. This allows
different variables to be passed at different times and makes the use
of the global variable more visible in the program. The parameter
list is placed in the procedure declaration after the keyword
procedure. In the parameter list, a variable may be passed by two
different methods. These two methods are referred to as passing by
reference, or passing by value.

- 34 -

Procedures and functions Chapter 8

When a parameter is passed by reference, the actual argument is
passed to the procedure, and if the procedure alters its value, the
argument's value is changed in the rest of the program. When a
parameter is passed by reference, the argument must be a variable.

When a parameter is passed by value, what is passed is a copy of
the argument. If the procedure alters the parameter's value, the
value in the rest of the program is not changed. When a parameter is
passed by value, the argument may be a variable or any legal
arithmetic expression. Parameters passed by value will prevent
unwanted changes in a variable value by the called procedure. Notice
the following example parameter list.

PROCEDURE test (date: INTEGER; VAR profit:REAL; cost:REAL);

The variables "cost" and "date" will be passed by value. The
variable "profit" will be passed by reference. Every time a variable
is to be passed by reference, the keyword "var" must precede it,
otherwise it will automatically be passed by value.

It is sometimes hard for new programmers to understand the
difference between letting variables be global when accessing them in
a procedure, versus passing them by reference. There is a major
difference, in that different variables may be passed to a procedure.
The only stipulation is that the variables must match the parameter
list. If they are declared as globals and alterd by a procedure, then
all values to be passed to the procedure must be transferred to these
global variables. A second major difference is that in large
programs, it is often difficult to determine what routines are
changing specific variables. Sometimes accidental changes may occur
in global variables. These changes are often referred to as side
effects.

By adhering to the convention of passing the variables to a
procedure, it is easier to determine how procedures alter external
variables and to minimize unwanted side effects. Certainly, global
variables do have use in Pascal programs, but many new Pascal
programmers have a tendency to over -use them.

Calling procedures

Procedures are called simply by referencing their name followed by
an argument list enclosed in parentheses. The list should be composed
of variables of the same type and order as declared in the procedure
declaration section.

- 35 -

Procedures and functions Chapter 8

Functions

Another block in Pascal similar to the procedure is the function.
Its internal structure is the same as the procedure with const, var
and type sections optional. The purpose of a function is similar to a
procedure. A procedure may stand alone as a statement, as the call to
"readn" illustrates in program 8.1 • A function may not stand alone.
It must be used in an expression, and may be used anywhere a variable
can be used. Consider the following program.

Listing 8.4

PROGRAM functiontest;
VAR

num:INTEGER;

FUNCTION ABS(number: INTEGER) : INTEGER;
BEGIN
IF (number< 0) THEN ABS:= - number

ELSE ABS:= number;
END;

BEGIN
num:= -30;
num := ABS (num);
WRITELN(' the absolute value of num = ',num);

END.

The result returned by the abs function is of the type integer.
The result must be used in an expression or assignment statement. It
is not valid to simply say abs (num) • The mechanism used to transfer
the functions calculated value back to the calling program is the use
of an assignment statement to assign the value to an identifier that
has the same name as the function name. This particular function is
already predefined in Pascal, and serves the same purpose as the
example.

- 36 -

)

(

Procedures and functions Chapter 8

Advanced program structure

Pascal is a block structured language. Thi~ ~eans that a program
is constructed in a block like manner. At a minimum, a program
consists of one block. More blocks are created through the use of
procedures and/or functions by placing them inside this outermost
"program block". The term for this process is called nesting. The
rule for nesting is that a block may lie entirely within another
block, but blocks do not overlap in any other way. A level of nesting
can be assigned to each block of a program. This provides an
appropriate tool for describing scope rules which are discussed later.
The block structured organization of a program can be represented
pictorially by the following diagram.

Diagram 8.1

Program Block (level 1)

Procedure Block (level 2)

Procedure Block (level 3)

Function Block (level 2)

Procedure Block (level 3)

Procedure Block (level 2)

A program then consists of at least one block, the program block,
and optionally it contains procedure and/or function blocks which are
nested within.

- 37 -

Procedures and functions Chapter 8

Local variables are those variables declared within the var section
of a particular procedure. Locals can be accessed from the body of
the procedure in which they are declared and from those procedures
declared within it. If a variable is used within a procedure and is
not declared local to it, then a global variable is used. Global
variables are those variables declared in an outer enclosing block.

Listing 8.2

PROGRAM globals;
VAR

i . INTEGER; .
b . BOOLEAN; .

PROCEDURE inner;
VAR

b: INTEGER;
BEGIN

b := i + 25;
i := i + l;

END;

BEGIN
i := 0;
writeln(i);

END.

In the above program, the i in the procedure refers to the variable
i in the main program. Since the program ~global" is an enclosing
block to the procedure "inner", the variables declared within the
program are accessible to the procedure. In the case of the variable
"b", the var section of the procedure redeclares b to be an integer.
When bis referred to in the procedure inner, the local variable is
used. The declaration of bas a local variable "masks" the global
definition of b.

Scope rules

The rules of accessability of variables, types and constants are
referred to as scope. The scope of an identifier is the procedure in
which it is declared, and all procedures declared within that
procedure. All identifiers including types, constants, variables and
procedure declarations have scope.

- 38 -

1
)

)

(

Procedures and functions Chapter 8

If an identifier is redeclared within its scope, the outer
definition becomes inaccessible within the scope of the inner
definition. In the example above, the declaration of bas an integer
within the inner procedure causes all references to bin that
procedure to refer to the local variable. The outer definition of b
as a boolean cannot be seen.

Pascal requires that all identifiers be declared before they are
used. If the declaration of an identifier has not yet been
encountered in the text of a program, then the identifier is
considered undefined. A procedure can be called from the body of the
block declaring it, from the procedures declared within it and from
the procedures declared within the same block. However, if procedure
A is declared before procedure Bin the same block, then procedure B
can call A, but procedure A cannot call B. This is due to the fact
that the declaration of B has not been encountered in the source text
when the body of procedure A is being compiled.

The above visibility restriction can be avoided with the use of
forward declarations. In a forward declaration, the body of the
procedure is replaced with the word FORWARD. The actual body is then
supplied later. If all procedures within a block are declared
forward, then any one of them can call any other.

Listing 8.3

PROGRAM Outer;
VAR

i : INTEGER;
FUNCTION Distance(xl, x2 : INTEGER):INTEGER;FORWARD;
FUNCTION Abs(tvalue: INTEGER) : INTEGER; FORWARD;

FUNCTION Distance(*(xl, x2: INTEGER) : INTEGER*);
BEGIN

distance:= abs(x2 - xl);
END;

FUNCTION Abs(*(tvalue: INTEGER) : INTEGER*);
BEGIN

if tvalue < 0 then abs:= -tvalue
else abs:= tvalue;

END;

BEGIN
WRITE('DISTANCE = ',Distance(8,2));

END.

- 39 -

Procedures and functions Chapter 8

If a procedure is declared forward, its parameter list is supplied
by the forward declaration. The body appears later in the text. The
body is introduced by the procedure· name followed by a semicolon. The
parameter list is not repeated. Notice that in the example, the
parameter list is commented out by putting(**) around it. It is
good practice to include the parameter list of a forward procedure in
a comment. This makes the body of the procedure easier to read.

Tutorial Quiz 8.0

(1) _____ _,,..and _____ promote modularity and
functionality in programs.

(2) Data is passed to procedures and functions through a
list.

(3) Blocks may be ___ within other blocks.

(4) Nesting affects the ____ of blocks.

(5) A block nested within an outer block may access the
outer blocks

(6) Parameters may be passed by value or

(7) When a variable is passed by
variable is passed.

, a copy of the

(8) When a variable is passed by reference the keyword
__ must precede it in the parameter list.

Answers:

Cl) Procedures, functions (2) parameter (3) nested

(4) level (5) identifiers (6) reference (7) value

(8) var

- 40 -

)

Chapter 9

ADVANCED DATA TYPES

Array data type

Another cousin to the data types already explained is the array.
Sometimes a large number of variables of a particular type are needed.
If for example you required seventy two variables of the type char to
represent a user's input character string from a file, you could
declare them as previously explained. The disadvantage is obvious, as
the effort would be time consuming. Furthermore, accessing the
individual variables would be confusing, as each would have a
different name.

There is a simple answer to this problem and it is the data type
array. You may declare a variable as:

or
variablename:
variable name

array [1 •• n] of type;
array (.l •• n.) of type;

Note - In TRS-80 Pascal, (.maybe substituted for[, and .) for]

where type is any previously defined data type and n is the number of
variables desired. For now we will concern ourselves with integer
dimensions. Integer dimensions may be any positive or negative
numbers such that the range of dimensions do not cause a storage
overflow. This is a machine dependent constraint that varies among
implementations. Thus we may declare:

VAR line: array [1 •• 72] of char;
varname:char;

To access a component of this array you would use a subscript
denoting the numerical element. An example assignment might be
varname := line[4]; • Varname would be set to the value of the fourth
element in the array line.

Any array may be declared with the word PACKED as a prefix. The
packed attribute tells the compiler to store the data elements as
efficiently as possible. In Standard Pascal, you may not pass
elements of packed structures by reference to procedures or functions,
and packed elements may not be used as arguments in READ statements.
In TRS-80 Pascal, there are no such restrictions.

- 41 -

Advanced data types

Arrays

listing 9.1

PROGRAM onedimarray;
VAR

stringl: PACKED ARRAY [1 •• 72] OF CHAR;
BEGIN

WRITELN('Enter command string');
READLN(INPUT,stringl);
WRITELN(OUTPUT,stringl);
WRITELN('Program complete');

END.

Chapter 9

If the I/O is directed to the terminal, the program will display
the prompt: "Enter command string" • At this point the user may type
up to seventy two characters of input, terminated with the return key.
The input characters will be input to the array "stringl" left
justified. If the input character string is less than seventy two
characters in length, the remaining storage positions in the array
will contain blanks. At this point the input message will be echoed
to the terminal. In TRS-80 Pascal, an entire single dimension packed
or nonpacked array of char may be input/output by a single read/write.

Arrays in Pascal may have multiple dimensions. Suppose that you
had a number of input character strings as in the previous example,
and it was desired to store every character string. A simple answer
would be to declare the array line: array [1 •• 5,1 .• 721 of char; •
This declaration is a Pascal short form for the declaration of
array[l •. 5] of array[l •• 72]of char; •

If the data structure is a two dimensional array of char, then the
read command will not input the entire array automatically, but
instead requires that each individual sub-array be read in with a
separate read statement.

- 42 -

)

Advanced data types Chapter 9

Remembering that any single dimension array may be input by a
single READ statement, leads to the following example array input
sequence. Examine the following program.

listing 9.2

PROGRAM arrayIO;
VAR

: INTEGER; I
stringl : ARRAY [1 .. 5,1 .. 72] OF CHAR;

BEGIN
FOR

END.

I:= 1 TO 5 DO
BEGIN
WRITELN(OUTPUT, 'Enter command
READLN(INPUT,stringl[I]);
END;

line ' , I) ;

This program will prompt the user for five different command lines.
In each case, the individual sub arrays are loaded into the array by
the program.

Since individual array elements are of the type char, any
operations that can be performed on a simple variable, of type char,
may be performed on an array element. Remember also that arrays may
be of any type such as boolean, integer or any user defined data
types, including arrays. Arrays may have upper and lower bounds
declared as constants in the declaration, and in fact, the name of
most simple data types may be substituted for the bounds. The number
of array elements in this case is determined by the number of elements
in the data type.

- 43 -

Advanced data types Chapter 9

User defined data types

The data types explained so far have been pre-defined. In Pascal,
you may define new data types at will. These defined types have names
chosen by the programmer and are declared in the TYPE section. Once
declared, they may be used where predefined type names are allowed.
This is a very powerful feature. Take for example the case where a
programmer is manipulating an integer variable in Basic that may take
on one of four values, 1 .. 4. The numbers may represent the colors
red, green, blue and orange. When the value is 1: a message is
written to the terminal saying that the color red is being processed,
2: That the color green is being processed and so on. This is
typically known as decoding information from a variable's value.
Needless to say, when Basic programs get very long, it is difficult to
determine their flow because of this decoding and encoding of
information. A simpler way would be to declare a variable that could
take on the value of red, green, blue and orange. Then tests could be
performed to see if the value of the variable is red, etc. Program
logic would be much clearer and easier to follow. In fact, this is
exactly what the following program does.

listing 9.3

PROGRAM usertypes;
TYPE difcolor = (red,
VAR

green, blue, orange);

color: difcolor;
BEGIN

color:= red;
REPEAT

CASE color
red
green
blue

of
: WRITELN(OUTPUT,'
: WRITELN(OUTPUT,'
: WRITELN(OUTPUT,'

orange: WRITELN(OUTPUT,'
END;

color:= succ(color);
UNTIL(color= orange);

END.

- 44 -

The color is red');
The color is green');
The color is blue');
The color is orange');

Advanced data types Chapter 9

Enumerated user defined types

Program 9.3 illustrates an enumerated user defined type, "difcolor"
An enumerated type is where a list of possible variable values are
given in the type declaration. The predefined function, "succ" is
available in Pascal, and is a convenient way of incrementing a user
defined variable type to the next possible value. In a simple program
using an integer variable, this could be accomplished by adding one to
the variable, but this would not make sense with a user defined type.
User defined enumerated data types may not have their values written
out. Program 9.3 gives an example of how that may be accomplished.

Subrange types

A variable may assume a value that is in a sub- interval of some
other simple type. In this case, it may be declared to be a subrange
type. For example, integer may represent all whole numbers between
-32,768 and 32,767. In the type section, a subrange user defined type
might be declared to be byte= 0 .• 255; I.E.; any variable of the type
byte may take on the value from Oto 255. The same operations may be
performed on a subrange type that are applicable to the original type.
Also a subrange type may be the subrange of any user defined simple
type.

listing 9.4

Program subrange;
TYPE

baddate = 1900 •. 1903;
'A' .. 'Z'; uppercaseletters =

lowercaseletters = 'a' .. 'z';
= '0' •• '9';
= -100 .. 100;

VAR

digits
xaxis

testyear
upper letter
lower letter
digit

BEGIN
END.

: baddate;
uppercaseletters;

: lowercaseletters;
: digits;

All of the above examples are valid subrange declarations. Named
subrange types are very helpful when a programmer wants to clearly
identify the data differences between specific variables to increase
readability. Also, the storage required for a subrange variable is
proportional to the interval it spans. This may be important when
building large data structures to be implemented on microcomputers.

- 45 -

Advanced data types Chapter 9

RECORD data types

So far, the only structured data type examined has been the array.
The array is an excellent mechanism for storing large amounts of data
of the same TYPE. For example, the series of text strings input from
the terminal were efficiently stored using arrays of CHAR, and any
individual character was easily accessible. However, it is often
desired to keep variables of different data types grouped together.
Take for example, a list of a business's customers along with vital
information about each customer. Suppose that you desired to keep the
following information about every customer:

Name
Customer category
Mailing address
Telephone number
Dollars spent in store
On catalog circulation list

This might represent a situation where the business would like to
keep a data base updated. In languages like Basic, the only way to
maintain this information would be multiple arrays containing encoded
information. This is not the case in Pascal, as you may build a
RECORD which can store all of the above information in a clear and
concise format. Furthermore, you may declare an array to be of this
user defined type.

Record data types

In Pascal, a RECORD is a predefined data structure which is
composed of component variables. These component fields may be
variables of any Pascal predefined, or user defined data types. The
purpose of a record is to group variable information into logical
entities, such that any particular component field may be operated on,
or the entire record may be referenced as a whole. The following is
an example of how the previous business record is declared in Pascal.

- 46 -

Advanced data types

Listing 9.5

PROGRAM database;
TYPE

custrnrcategory = (business,individual);
custmrecord = RECORD

custrnrtype : custmrcategory;
address PACKED ARRAY[l •• 72] OF CHAR;
telephone : PACKED ARRAY[l •• 15] OF CHAR;
expenditures : REAL;
cataloglist : BOOLEAN;
END;

VAR
custmr : custmrecord;
custmrlist: ARRAY[l •• 100] OF custmrecord;
index : INTEGER;
ans : CHAR;

PROCEDURE custmrinp(VAR custmr:custmrecord);
VAR custyp: CHAR;
BEGIN

Chapter 9

WRITELN('* Enter customer type: (business/individual)');
READLN(custyp);
IF(custyp='I')THEN

custrnr.custmrtype:=individual
ELSE custmr.custmrtype:=business;
WRITELN{'* Enter address:');
READLN(custmr.address);
WRITELN('* Enter telephone number:');
READLN(custmr.telephone);
WRITELN('* Enter expenditure in dollars:');
READLN(custmr.expenditures);
WRITELN('* Want on catalog circulation list: (true/false)');
READLN{custmr.cataloglist);

END;
BEGIN

index:=0;
ans:='N';
WRITELN{'** BUSINESS XYZ CUSTOMER RECORD PROGRAM**');
WHILE (ans<> 'S') DO

END.

BEGIN
index:=index+l;
custmrinp(custmrlist[index]);
WRITELN('* MORE CUSTOMERS {STOP/CONTINUE)');
READLN(ans);
END;

- 47 -

Advanced data types Chapter 9

The outer shell that must enclose record type declarations is of
the form:

type name= RECORD
END;

The component field declarations reside between the RECORD and END; •
The field declarations are defined in the same way as the VAR section
of the program. In program 9.5, the user defined record name is
custmrecord. The component field declarations: custmrtype,
address, telephone, expenditures, and cataloglist are defined exactly
the same way as the program variables are in the VAR section. All
the field components belong to the data type custmrecord. Since
custmrecord is treated like any other user defined type, we may now
declare a variable to be of type custmrecord in the program VAR
section.

The difference between a record and other simple user defined data
types is that there are component fields in a record that are really
variables themselves. In example 9.5, the variable custmr is of a
record type. When referring to custmr in expressions, to reference
the entire record, you simply use the variable name, custmr. To
access the component field, expenditures, you would prefix
expenditures with the record variable name, custmr, separated with a
'·' character. Example:

custmr.expenditures:= 99.95;

If another record named excustomer had been declared, the following
would be a valid statement.

excustomer:=custmr;

In this case, all component .fields in excustmr would be set to
the component fields in custmr. Variables of type record, and their
associated component fields, obey the same rules for use as all other
typed variables.

The purpose of program 9.5 is to perform record I/O utilizing the
predeclared text files input and output. Notice the read and write
statements utilize record component fields as arguments. Read and
write behave as though the component fields were variables declared in
the VAR section. As with other variables, I/O may not be performed to
a text file through a component field that is of a user defined
enumerated type.

- 48 -

J

Advanced data types Chapter 9

WITH statements

The use of records may often cause segments of the program that
reference them to become long and tedious, because every time a
component field is referenced, the record variable name must precede
it. Accessing component fields may be simplified by using the WITH
statement. Examine the following procedure, which could be included
in program 9.5.

Listing 9.6

PROCEDURE custmroutput(VAR custmr:custmrrecord);

BEGIN

END;

WRITELN('** CUSTOMER OUTPUT RECORD FOR BUSINESS XYY **');
WITH custmr DO

BEGIN
IF(custmrtype=business)then

WRITELN ('Customer type : Business')
ELSE WRITELN('Customer type : Individual');
WRITELN ('Address : ',address);
WRITELN ('Telephone : ',telephone);
WRITELN ('Expenditures : ',expenditures);
WRITE {'Circulation list: ');
IF {cataloglist)THEN WRITELN('Yes')
ELSE WRITELN('No');
END;

The action of the WITH statement is to eliminate the normally
required record variable name prefix when accessing component fields
of that record. The scope of the WITH is one statement, which in this
case is a compound statement.

- 49 -

Advanced data types Chapter 9

File of TYPE

INPUT and OUTPUT are examples of TEXT files in Pascal. These FILE
types have been used for all of the program examples so far. A TEXT
file is TRS-80 Pascal predeclared to be a special file of char, with
rules for performing I/O using INTEGER, REAL and BOOLEAN variables.
In TRS-80 Pascal, there are extensions to allow for performing I/O
using ARRAY variables in text files.

A FILE OF <any known type> may be declared in Pascal. Files of
types other than text are primarily used for storing data which will
be retrieved at some other time. For example, a FILE OF customerecord
could be defined in the type section. (customerecord as defined in
listing 9.5) A variable of type customerecord could be written to this
file. The important thing to remember is that an entire record may be
written (or read), by one I/O statement. Component fields of this
record may not be read or written individually to a file of records.
When I/O is performed with a FILE OF <any type except text>, no ASCII
encoding or decoding of information takes place. Instead, the binary
representation is used. This is not particularly useful when the I/O
is directed to a terminal, but is effective for storing large amounts
of information on disk media. The predeclared procedures WRITELN and
READLN are not valid when performing I/O with a file of any type
except TEXT, although read and write perform normally. The program in
the appendix of this manual utilizes a FILE OF custmrecord for storing
information in a data base. This is a typical use for a FILE OF TYPE.

- 50 -

)

(

Tutorial Quiz 9.0 Chapter 9

Cl) If a large number of variables of the same
TYPE need to be declared, the
may be the correct data structure to use.

(2) Arrays in Pascal may have more than
dimension.

(3) New user defined may be declared in ---Pascal programs.

(4) An-~---- TYPE is defined by a list of
identifiers given to be the different values
allowable for a variable.

(5) A ______ TYPE is any user defined TYPE
that is a sub-interval of another simple TYPE.

(6) A _____ TYPE is used to logically group
together data of different types.

Answers:

(1) array (2) one (3) types (4) enumeration

(5) subrange (6) record

- 51 -

Chapter 10

DYNAMIC DATA TYPE

All of the variable types discussed so far have been "static" in
nature. This means that the size of data structures such as the array
have to be defined before the program is compiled or executed. In
program 9.5, the size of the array customer list has an upper bound of
100 entries. If more than 100 storage locations are needed to store
the customer records, the array declaration has to be changed in the
source program, and the source recompiled. In most popular
micro-minicomputer Pascal implementations today, there are limits to
the number of storage focations that may be declared in a program.
This limitation is usually proportional to the size of the program in
conjunction with the type and number of variable declarations. It is
usually impractical due to these memory restrictions to declare arrays
and other data structures to be larger than required. The static
nature of variable declarations often create problems in some
programming applications. Suppose for example, that in program 9.5 it
was desired to keep a list of sales transactions for each customer
attached to each customer record. This could be accomplished by
declaring a component field of each customer record as being an array
of transaction records. Then at any time you could access the sales
transaction of every customer. This would require that the number of
sales transactions per customer be limited to a preset number by the
array declaration. It might be feasible to limit the number of
customers to 100, but the number of transactions per customer might
vary. There is a mechanism in Pascal to allow for dynamic variable
allocation at program execution time. It is possible to request a new
storage location for a variable by calling the Pascal pre-defined
procedure NEW.

Procedure NEW

By calling the procedure NEW, it is possible to get a pointer to a
memory storage location that is the proper size for the argument
variable. It is important to remember that the same limitations on
the amount of memory available still apply, however dynamic allocation
of memory allows for better utilization of space. The variable used
as an argument for the NEW procedure call must have been declared in
the VAR section. It must be declared as a TYPE that is a pointer to
the actual data type. An example of a pointer data type declared in
the TYPE section is as follows:

- 52 -

Dynamic data type

Listing 10.1

TYPE
trxptr = Atrxrec;

trxrec = RECORD
nexttrx: trxptr;
invoicenumber . INTEGER; .
date . ARRAY [1 •• 10] .
transprice . REAL; .
partnumberlist . ARRAY [1 •• 10] .
END;

VAR
trx trxptr;

Chapter 10

OF CHAR;

OF CHAR;

..
In the example program segment, the variable trx is of type

trxptr. In the type section, trxptr is defined to be
a pointer to" trxrec" • The character" A" denotes a
pointer in Pascal. Therefore, the variable trx is a pointer
to a storage location in memory of the size required to store the
RECORD trxrec. This storage location may be requested anytime
during program execution as opposed to program startup. Pointer types
to large data structures may be declared in a program with minimum
memory space penalty until the procedure NEW is called during program
execution. Notice at the "Atrxrec" point in the type
declaration, trxrec has not been defined. In Pascal,
declaring a pointer to an as yet undefined type is valid.

The following program segment illustrates a few simple methods of
using pointer variable types.

- 53 -

Dynamic data type

Listing 10.2

PROGRAM dynamic;

Chapter 10

(* TYPE declaration section from listing 10.1 *)

VAR
trx : trxptr;
nexttrx: trxptr;

BEGIN
NEW (trx);
trxA.invoicenumber:=2345;
trxA.transprice :=99.95;
nexttrx:=trx;
WRITELN{'* Transaction invoicenumber:

trxA.invoicenumber);
WRITELN('* Transaction price

trx.transprice);
DISPOSE{trx);

END.

,

If the pointer itself is being referenced, just the variable name is
used. In the example, the pointer variable nexttrx is set to
the value of trx. When referring to the contents of the
storage location, an" ... 11 follows the variable name.
"trxA.transprice" refers to the value of the component field
stored at that location. These basics of pointer data type
manipulation are used to build "linked lists" A linked list is a
chained list of dynamic storage areas.

Notice the procedure call to DISPOSE. The purpose of DISPOSE is to·
re-lease the storage area acquired in the NEW call. After the DISPOSE,
the data stored at the dynamic memory location is effectively lost.
This is an important feature of Pascal. Careful use of NEW and
DISPOSE can result in programs that dynamically grow and contract in
memory size as needed, and efficiently manage the computer resources.

LINKED LIS1r

A linked list is a programming technique that chains together a
series of variables. A thorough discussion of linked list processing
would entail several chapters, and is really a topic for a data
structures book. It will be covered briefly here because it is
integral to discussions about dynamic memory management.

- 54 -

(

Dynamic data type Chapter 10

In example 10.1, the data type trxrec has a component
field which is a pointer to a storage area of the same type as itself.
A pointer to another record node may be stored in this field. In the
record pointed to, a pointer to another record node could be stored,
and so on. In this way, a series of record nodes may be linked
together. The following diagram will help to visualize this list.

Listing 10.3

VAR
headnode: trxptr;

headnode
I
V -------------- --------------record number 1

trxrec = RECORD
nexttrx: trxptr;
invoicenumber
date
transprice
partnumberlist
END;

record

INTEGER;
ARRAY [1 •• 10] OF CHAR;
REAL;
ARRAY [1 •• 10] OF INTEGER;

number 2 1<-trxrec = RECORD
nexttrx: trxptr;
invoicenumber
date

transprice
partnumberlist
END;

record
trxrec = RECORD

nexttrx: trxptr;
invoicenumber :
date
transprice
partnumberlist
END;

INTEGER;
ARRAY [l .. 101
REAL;
ARRAY [l .. 101

number 3

INTEGER;
ARRAY [1 .. 10 1
REAL;
ARRAY [1 .. 10]

OF

OF

OF

OF

CHAR;

INTEGER;

. .

I<-

CHAR;

INTEGER;

. . ---------------------------
NIL<----------------------------

- 55 -

Dynamic data type Chapter 10

The variable headnode is a pointer variable declared in the VAR
section of the program. At some point in the program, a NEW procedure
call could be made with headnode as its argument. Headnode would now·
be a pointer to the start of the list. Notice the word NIL at the end
of the list. NIL is a reserved word in Pascal. This simply sets the
pointer to an initialized value that may be tested for in looping
statements. A word of caution when using pointers in Pascal. If a
pointer variable has been declared, but not set to any value, there is
no guarantee of its value. It will not necessarily be set to NIL.
Most Pascal implementations do not perform a runtime check for
uninitialized values. Use of uninitialized pointers can lead to the
program writing over itself in memory with execution becoming
unpredictable. These kinds of programming errors will not show up at
compile time, and can be extremely hard to find during program
execution. The following segment illustrates how list 10.3 could be
built.

Listing 10.4

PROGRAM linkedlist(input,output);
TYPE

trxptr = Atrxrec;
textline = PACKED ARRAY [1 •• 10] OF CHAR;
trxrec = RECORD

nexttrx: trxptr;
invoicenumber : INTEGER;
date : textline;
transprice : REAL;
partnumberlist: textline;
END;

VAR
headnode,transnode:trxptr;

I : INTEGER;
PROCEDURE readtrx(VAR trx:trxrec);

(* The purpose of this routine is to prompt the user for*)
(* the purchaser's trx record *)

BEGIN
WITH trx DO

BEGIN
WRITELN('ENTER INVOICE NUMBER:');
READLN(invoicenumber};
WRITELN('ENTER DATE:');
READLN(date);
WRITELN{'ENTER TOTAL PURCHASE PRICE:');
READLN(transprice);
WRITELN{'ENTER PARTNUMBER(S) SEPARATED BY COMMAS:');
READLN(partnumberlist);
END;

END; C*readtrx*)

- 56 -

Dynamic data type Chapter 10

Listing 10.5 (continuation 10.4)

PROCEDURE writetrx(VAR trx:trxrec);
(* The purpose of this routine is to write
(* trx entry
VAR !:INTEGER;
BEGIN

WITH trx DO
BEGIN
FOR I:= 1 TO 35 DO WRITE('*');
WRITELN;

the purchaser*>
*)

WRITELN('INVOICE NUMBER : ',invoicenumber);
WRITELN('DATE : ',date);
WRITELN C '·roTAL PURCHASE PRICE : ', transprice: 10);
WRITELN('PART NUMBER LIST : ',partnumberlist);
FOR I:=l TO 35 DO WRITE('*');
WRITELN;
WRITELN;
END;

END; (*PROCEDURE writetrx*)

PROCEDURE listrxs(ternptr: trxptr);
(* the purpose of this procedure is to traverse the linked*)
(* list attached to the argument pointer, writing the *)
(* values of the trx records *>
VAR

loctrx: trxrec;
BEGIN

(* traverse trx linked list,writing trxs *>
WHILE (ternptr <> NIL) DO

BEGIN
(* load the contents of localtrx with the*)
(* contents of ternptr

loctrx:=ternptr";
writetrx(loctrx);

(* set temptr to the next node in the linked list
temptr := temptr".nexttrx
END;

END; C*listransactions*)

- 57 -

*)

*)

Dynamic data type Chapter 10

Listing 10.6 (continuation 10.5)

BEGIN (* begin main program linkedlist *)
C* initialize pointer that will always reflect the*)
(* beginning of the list. *)
(* thi's will set the end of the list to NIL during the first *)
(* pass through the FOR loop *)

headnode := NIL;
(* read 3 trxs and link each new one to the beginning*)
(* of the list *)

FOR I := 1 to 3 DO
BEGIN
NEW(transnode);

(* insert the newnode in front of the old headnode *)
(* link to the old headnode *)

transnodeA.nexttrx := headnode;
{* make the newnode the new headnode *)

headnode := transnode;
(* load the actual data into the fields of the new node*)

readtrx(transnodeA);
END;
(* list all trxs entered*)

listrxs(headnode);
END. (*main program*)

- 58 -

Chapter 11

Sets

Sets in Pascal have the same meaning as they do in the normal
mathematical sense. If a group of objects are declared in set A, and
a group of objects are declared in set B, a number of operations may
be performed on these sets such as:

Cl) Membership and relational testing
(2) Set arithmetic (union,intersection,difference)

In the case of Pascal, the objects are simply data values. These
data values may be Pascal predefined or user defined. An example
would be a SET OF CHAR, or a SET OF digits where digits is a user
defined subrange type of CHAR. Testing could be performed to see if
the SET OF digits is in the SET OF CHAR if desired. The method of
declaring set variables is:

VAR A,B: SET OF <type>;

This means that A and B may contain from one to all of the data
values declared by the type, however its membership is undefined until
it is initialized like any other variable. In the body of the
program, a set may be initialized to empty by:

A:=[];

Membership testing

Once the set variables are initialized, a series of BOOLEAN
relational tests may be performed. The relational operators are as
follows:

setl = set2

setl <= set2

setl >= set2

Set equality- If (all members of first
set are in the second set and all
members of second set are in the
first set) : returns true.

Subset- If (all members of first set
are in the second set) : returns true.

Superset- If (all members of second set
are in the first set) :returns true.

- 59 -

Sets

setl <> set2

Chapter 11

Set inequality- If all members of first
set are in second set, and all members
of second set are in first set:
returns false.

Individual element membership may be tested by using the IN
operator. If a variable had been declared of the same type as the
base set type, the IN operator may be used to check for set
membership. An example would be:

Listing 12.1

TYPE
DIGITS= '0' .. '9';

VAR
DIGIT
D

BEGIN
D:='a';

SET OF DIGITS;
CHAR;

DIGIT:=['0' .. '9'];
IF(D IN DIGIT)THEN DO (*action*);
IF(D='0')ORCD='l')OR(D='2')OR(D='3')OR(D='4'}OR(D='5')

ORCD='6')OR(D='7')OR(D='8')OR(D='9') THEN DO (*ACTION*)

The two IF statements in the above program segment are equivalent.
Notice that the equivalent IF statement using sets is a more concise
and readable statement. This represents a simple use for sets for the
average programmer.

Set arithmetic

There are three set operators in Pascal. Each requires two
arguments. Arguments should be sets of the same base type, and the
result will be of the same type. The operators are:

A + B

A * B

A - B

Gives the union of A and B

Gives the intersection of A and B

Gives the difference of A and B.

- 60 -

)

(

Sets Chapter 11

The following segment program illustrates set operator use.

LISTING 12.2

PROGRAM TESTSET:
VAR

DIGITS,LETTERS,LOWERCASE,UPPERCASE: SET OF CHAR:
ALPHANUMERIC,ALPHA : SET OF CHAR:
D: CHAR:

BEGIN
D:='l':
DIGITS:=['0' •• '9']:
LOWERCASE:=['a' •• 'z']:
UPPERCASE:=['A' •• 'Z']:
LETTERS:=LOWERCASE + UPPERCASE:
ALPHANUMERIC:=LETTERS + DIGITS:
ALPHA:=ALPHANUMERIC - DIGITS:
IF (DIN ALPHANUMERIC* DIGITS) THEN

WRITELN ('PUNT') :
END.

- 61 -

Appendix

On diskette there is a file named DATABASE/PCL. This source prograc~-,
ties all of the previous program segments in chapters 9 and 10
together, to build a program that will build a data base for
business customers. This is not intended to be a comprehensive
program, but can serve as a starting point for an expansion. This
program requires approximately lSK of stack to RUN or execute.
Once compiled, it may be executed by typing:

RUN DATABASE 15K

The number of customers allowed in the data base array is set by
the constant "maxarray" , and may be changed to reflect local memory
restrictions. Customer transactions are linked to each customer
record by dynamic management of linked lists. Customer records are
kept on a separate file from the transactions in order to simplify
rebuilding of the linked lists when loading an existing data base.
The size of the data base accessible during a program invocation is
limited by the available memory, as the entire data base is loaded
into memory for operations. Large data bases may be accessed by
partitioning the data base between files and running the program
multiple times.

- 62 -

)

LANGUAGE REFERENCE MANUAL

TABLE OF CONTENTS

Notation and Terminology ••••••••••••••••••••••••••••••••••• 5

Chapter 1

Program Elements. • •••• 7
A. Identifiers. • •.• 7
B.
c.
D.
E.
F.
G.

Numbers. • • • • • • • • • • • • • • • • ••••••••• .8
Strings •• • • 9
Reserved Words.
Special Symbols. .9

. 10 . Comments •••••••
The Semicolon •••••

.10
• •• 11

Chapter 2

Program Structure ••••••••• ~•·· ••. 12
A. Block Headings •••••••••••••••••••.•...• 13

1. PROGRAM Heading •••••••••••••••••••••••••• •. 13
2. PROCEDURE Heading ••
3. FUNCTION Heading ••••

. .•...•. 13
. . • . . . • . • • . • • . . • • • • . • • • . . 15

B. Block Parts •••••••••••• • .16

Chapter 3

1.
2.
3.
4.
5.
6.
7.
8.

• • • • • • 1 7 LABEL Declarations •••••••
CONSTant Definitions •••
TYPE Definitions ••••••
VARiable Declarations.
COMMON Declarations •••
ACCESS Declarations ••••

. 18
.••.•..... 19

• • 20
• • • . • • . • . . • • • . . • . . 20

.21
PROCEDURE and FUNCTION Declarations •••• • ••• 2 2
Statement Body ••••••••••••••••••••••• • ••... 23

Simple Data Types •••••••••••••••••••.......• 24
A. Ordinal Types •••••••••••••••24

1. INTEGER.•.. 24
CHAR •••••••••••••••• • • 25
BOOLEAN. • . • • • • • • • • • • . • • • • • . 25

2.
3.
4.
5.

Enumeration ••••••••••••••• .26
Subrange •••••••••••••• •..••.•• 27

B. REAL Type •••••••••• • • 27

Chapter 4

Structured Data Types •••••••••••••••••••••••••••••••••• 2 8
A. ARRAY.••..••... 28
B. SET • .•••••••••••••••••••••• ..•••.. 29

• . . • . • . • . . • • . . . • • . 32
Type TEXT ••••••••••••••••••••••••• 33

.
C. FILE .••

1. Predefined
D. RECORD •••••••••••••••••••••••• • • • .•.••••••..••. 34

1

Chapter 5

Pointer Data Type •••••••••••••••••••••••••••••••••••••• 40

Chapter 6

Operators ••••••••••••••••••••••••••••••••••• • ••• 4 4
A. Arithmetic. ••....•... 44
B. Relational ••••••••••••••••••••••••••••• • ••.• 4 5

• ••••••.••..•.•.•.••... 46 c.
D.

Boolean ••••
Precedence •••
Type Transfer.

. .. 47
E. •.•.. 48

Chapter 7

Expressions •• 49

Chapter 8

Statements •••••••••
A. Assignment.
B. Compound ••••••••••
C. Repetitive •••••••••••••••••

1. FOR . •••
2. WHILE.
3. REPEAT.

.

.53

.54

.55
• 55

.56
• ••• 5 7

D. Conditional ••••• • •••••• 57
•. • •..•.•..•.. 58

1. IF . .•..••••••••.••..••••••. 58
2. CASE • • 60

E.
F.
G.

WITH. • • • • • • • • • • • •••••••••••••••••••
GOTO ••••••••••••••••••••••••••••••••••

. 61
. ...••.•.. 63

Procedure. • ••• 63

Chapter 9

Procedures and Functions. • • 65
A. Scope Rules. ..•.. 66
B. FORWARD •••••••••• •••• 68
C. EXTERNAL ••••• ~ •... 69

. ...•.• 71
. • • • • . . • . . • • . . . 72

D. Recursion ••••••••••••••••••••••
E. Predeclared ••••••••

2

Chapter 10

Input and Output ••••••• • •••••••••..•.••• 7 6
A.
B.
c.

RESET ••••••••••••••
REWRITE ••••••••••••••••••••••
READ •••• .

D. WRITE ••••••••••••••••• . . .

••• 77
••• 78

.79

.81
E.
F.
G.

READLN ••••••••••••••••••••••••••••••• ••••••••••. 84
. ..•.•.•..... 85 WRITELN.

CLOSE ••••••••••••••••• • ••• 86
H. PAGE •.••••••••••••••••••••••• .87
I. MESSAGE .••••••••••••••••••••• • •• 87

Appendix •••••••••••••••••••••••••••••• • •• 88
A. Compiler Options •• • •••• 88

.•.••.•.• 98 B.
c.
D.

E.
F.
G.
H.
I.

Error Messages •••
ASCII Character Set •••••••••••••••••
Differences from Standard ••••••••••
1.

• .102
• •••• 105

• ..•••...•.. 105
2.
3.

Omissions •••••••••••••••••••••
Extensions. • • • • • • • • • • • • • • • 105
Other Implementation Characteristics. • .107

Strings •••••••••••••••••••••••••••••••• • •••• 108
Get and Put I/O procedures •••••••••••
Using files in structured variables.
Using global variables in externals.

. 112
. 115

• .118
Using common variables ••••••••••••••••••••••••••• 119

3

FOREWORD

This manual assumes that the reader is already somewhat familiar with
the Pascal language. It is organized to be used as a reference
manual. As such, the chapters group related topics in order to make
them easier to find. The result of this is that the manual does not
follow a progression of discussion which is well suited as a teacher
of the Pascal language. It is suggested that you first read the
Pascal Tutorial if this is your first experience with the language.

- 4 -

)

(

NOTATION AND TERMINOLOGY

The description of any programming language involves both the syntax
and the semantics of the language. The syntax refers to the
arrangement of program elements into a form which the compiler can
understand. The semantics refers to the meaning that the compiler
associates with a particular arrangement of the program elements. The
semantics of a language can be explained with words but the syntax is
best explained through the use of diagrams.

The syntax diagrams used throughout this manual describe the legal
syntax of a program. Each diagram has an entering and an exiting
point which is denoted by an arrow. Starting with the arrow entering
a diagram, the legal syntax can be determined by tracing a path which
follows the directions indicated by the arrows until the exiting arrow
is reached. Most diagrams have a multiple number of paths from
starting point to ending point. All paths describe a syntactically
correct form.

The following are sample syntax diagrams which describe the syntax
of an integer.

Syntax of an integer:

--> -

--> + --1 ,----------1
V V

--------------->digit--->

Syntax of a

- 5 -

digit:

--> 0

--> 1

--> 2

--> 3

--> 4

--> 5

--> 6

--> 7

--> 8
V

------> 9 ------>

The syntax diagram for an integer says that an integer is a
concatenation of one or more digits which is optionally preceded by a
plus or minus sign. Entering the diagram, you have 3 possible paths
from which to choose. One path leads directly to "digit", one leads
to"+", and one leads to"-". The paths from both"+" and"-" then
lead to "digit". Passing through "digit", you have the option of
exiting the diagram or following the arrow which leads back to the
beginning of "digit". From this point, you pass through digit again
and optionally exit or return for another pass. Thus, an integer may
consist of one or more digits.

The second syntax diagram describes the correct forms of a digit.
Entering the diagram, you have ten possible paths from which to
choose. All paths lead to a single character, each of which is a
legal digit. Choosing a path, you follow it through a character and
end up at the exiting arrow. At this point, there is no alternative
but to exit the diagram. No other paths are available. Some examples
of integers then are 10, +963, and -75.

In the diagrams used in this manual, upper case character strings
denote reserved words that must be present in the form shown. Lower
case character strings denote the parts of the syntax where many legal
forms exist. For example, the word integer in a diagram in lower case
letters represents any legal integer. The word INTEGER in uppercase
letters represents a reserved word of the language.

In some cases, abbreviations are used to shorten a diagram. For
example, id is used in place of identifier. Also, expr is used in
place of expression. A few other abbreviations may occur but where
used, their meaning should be apparent from the surrounding text.

- 6 -

)

Program Elements Chapter 1

PROGRAM ELEMENTS

The elements of a program consist of the entities (identifiers,
numbers, strings, reserved words, and special symbols) which are
composed from a character set. The ASCII character set is the most
often used and is listed in the appendix.

A. Identifiers

An identifier serves to denote the program name, a constant, a type,
a variable, a procedure, or a function. It consists of a letter
followed by combinations of zero or more of the following characters:

(the 26 letters of the alphabet in lower or upper case,
the digits O through 9, the character$, the character).

Note:
no distinction is made between upper and lower case letters
in identifiers. The two identifiers, Apple and apple, are
considered identical.

The length of an identifier is arbitrary but only the first 8
characters are significant. For example, the identifiers A2345678 and
A23456789 would to the compiler be identical because it discards all
characters past the eighth character. Therefore, care should be taken
to make identifiers eight characters unique. It should also be noted
that an identifier cannot contain embedded blanks or span a line
boundary.

Examples: Factor$ DEPARTMENT A Div 10 B12345678$_

- 7 -

Program Elements Chapter 1

B. Numbers

Numbers are integer or real constants. Integers are allocated
sixteen bits of storage which imposes a size limitation. The range
for an integer is -32768 to +32767.

Syntax of integer numbers:

--> -

--> + ---1
V V

--------------------> digit--->

Examples of integer numbers:

30 -28934 0 32739

Real numbers are represented in either exponential or fixed point
form. The fixed point form consists of an integer part followed by
a decimal point and a fractional part. The exponential form consists
of a fixed point part followed by an exponent part. The exponent
part is a multiplier. The value of a real number in exponential form
is the fixed point part times (10 raised to the exponent part).
(See the System Implementation Manual for the size, range, and
accuracy of real numbers).

Syntax of real numbers:

I I
V V

-->integer--->.---> digit ----------> E ---->integer--->

I
Examples of real numbers: --> D

Fixed point form:

50.0 -100000.0 345.22452

Exponential form:

0.239E3 -4.5921E-2 876.0E+33

0.239E3 is equivalent to 239.0
-4.5921E-2 is equivalent to -0.045921

193.27D-3

NOTE: Using D instead of E in exponential form represents
a double precision real number.

- 8 -

)

Program Elements Chapter 1

C. Strings

Strings are sequences of characters enclosed by single quote marks.
~ string consisting of a single character is a constant of the type
CHAR. Strings consisting of n characters, where n is greater than
one, are constants of the type PACKED ARRAY[l •• n] OF CHAR. If a
string is to contain a single quote mark, it must appear twice in the
sequence.

Examples: 'ABC' '12"QZW' 'BEGIN' '* **' ' % '

The string consisting of the single character' is represented as
I t I I .

Characters in strings can also be denoted by hexadecimal numbers.
A hexadecimal number is composed from the characters O through 9 and A
through F. (See the ASCII character set in the appendix). The
character i followed by 2 hexadecimal characters represents a single
ascii character. The character represented is the one whose ordinal
position in the character set corresponds to the hexadecimal number
specified. This feature provides a mechanism for representing
nonprintable characters. A consequence of giving the character i a
special meaning is that it must appear twice in a string just as the
character' must when the character itself is to be made a part of the
string. A string consisting of the single character i then is
represented by'##'.

Examples of hexadecimal character representation in strings:

'#30' is equivalent to '0'
'D#4FG' is equivalent to 'DOG'
'#00' corresponds to the nonprintable null character
'AiB' is illegal

D. Reserved Words

The following list of words are keywords and have special meaning in
a program. They may not be used as identifiers.

AND DOWNTO IF OR THEN
ARRAY ELSE IN PACKED TO
BEGIN END LABEL PROCEDURE TYPE
CASE FILE MOD PROGRAM UNTIL
CONST FOR NIL RECORD VAR
DIV FUNCTION NOT REPEAT WHILE
DO GOTO OF SET WITH

- 9 -

Program Elements Chapter 1

E. Special Symbols

The special symbols are used as operators and delimiters in a
program. Because character sets vary from system to system, alternate
representations are provided for some of the symbols.

Symbols with only one representation:

+ * I
= <> < <= >= >

) ·-.- . , . : # : : ,

Symbols with alternate representations:

symbol
{
}
....

[
1

F. Comments

alternate
(*
*)
@
(.
.)

Comments can be used in a program for documentation purposes. The
compiler generates no code for comments. The symbol { denotes the
beginning of a comment while the symbol} denotes the end. All
characters in between are ignored by the compiler. As shown above,
th~ symbol {maybe replaced by the symbol(* and the symbol} may be
replaced by the symbol*).

Examples: {this is a comment}
(*This is a comment

that spans more than one line*)

Note: Comments may not be nested. The following will generate
an error:

(*outer (*inner level*) level*)

- 10 -

Program Elements Chapter 1

G. The Semicolon

The semicolon is used extensively in the Pascal language. Its
purpose is to separate the individual components of a program. For
example, block headings must be separated from block parts, block
parts must be separated from one another, and individual definitions,
declarations, and statements within the block parts must be separated.
In general, they may be used freely throughout the program. However,
care should be taken not to include a semicolon in the middle of a
statement. This is a common source for error when using the IF
statement with one or more ELSE clauses. Since the ELSE clauses are a
part of the IF statement, they must not be separated from it by a
semicolon. An ELSE keyword should never be preceded by a semicolon.

example use of semicolons in an IF statement:

IF time
BEGIN

> 12 THEN

alpha := 'e';
beta := 'f';
END (*semicolon here would cause an error*)

ELSE
BEGIN
alpha := 'g';
beta := 'h';
END;

- 11 -

Program Structure Chapter 2

PROGRAM STRUCTURE

Pascal is a block structured language. This means that a program is
constructed in a block like manner. At a minimum, a program consists
of one block. More blocks are created through the use of procedures
and/or functions by placing them inside this outermost "program
block". The term for this process is called nesting. The rule for
nesting is that a block may lie entirely within another block, but
blocks do not overlap in any other way. A level of nesting can be
assigned to each block of a program. This provides an appropriate
tool for describing scope rules which are discussed in chapter 9. The
block structured organization of a program can be represented
pictorially by the following example:

Program Block A (level 1)

Procedure Block B (level 2)

Procedure Block C(level 3)

Function Block D (level 2)

Procedure Block E(level 3)

Procedure Block F (level 2)

A program then consists of at least one block, the program block, and
optionally it contains procedure and/or function blocks which are
nested within.

- 12 -

Program Structure Chapter 2

A. Block Headings

The purpose of the block heading is to give the block a name and in
the case of procedure or function blocks, to define any parameters to
be passed to the block. There are three types of blocks: the program
block, the procedure block, and the function block. There is only one
program block, the outermost block of the program, while there may be
any number of procedure and function blocks. Each of the three types
of blocks has a different heading. (Procedures and functions are
discussed further in chapter 9)

A.l The Program Heading

The program heading must be the first non-comment in a program. Its
purpose is to signal the start of the program and to give the program
a name. Characters inside the parentheses are ignored by the
compiler.

Syntax of the program heading:

I
V

--> PROGRAM -->id---> (-->comments-->)--->; -->

Example program headings:

PROGRAM lander; PROGRAM taxes(computes income tax);

A.2 The Procedure Heading

The procedure heading signals the start of a procedure block. It
gives the procedure a name and defines the parameters to be passed to
it.

Syntax of the procedure heading is:

I
V

-->PROCEDURE--> id---> parameter list --->; -->

- 13 -

Prog~am Structure Chapter 2

The parameter list declares the variables which are used to pass data
into and out of a procedure. The variables are called formal
paramet~rs. The procedure statement which activates (or calls) a
procedure has a corresponding list of parameters which are the actual
parameters. The actual parameters must match the formal parameters in
order and in type. However, their names need not be the same.

There are two different kinds of formal parameters, pass by value
or pass by reference. A formal pass by value parameter causes its
corresponding actual parameter to be copied to another location and
then the formal parameter references the copied value. Therefore,
changing the value of the formal parameter inside the procedure does
not change the value of the corresponding actual parameter. In
contrast, a formal pass by reference parameter is passed the address
of the corresponding actual parameter. The formal parameter
references the same location as the actual parameter. Therefore,
changiQg the value of the formal parameter also causes the value of
the actual parameter to be changed. variable declarations in the
parameter list which are preceded by the keyword VAR are pass by
reference parameters while the absence of the keyword represents pass
by value.

Syntax of the parameter list is:

-------------------- I <--------------------
------- ---- I

V I V i
--> C ------->VAR-------> id------->:--> type id------->)-->

Example procedure headings:

PROCEDURE out;

PROCEDURE cpu(pc: INTEGER);

PROCEDURE delete(VAR i,j :INTEGER; ch :CHAR; VAR X :REAL);

In procedure delete above, i and j are integers which are passed by
reference, ch is a character which is passed by value, and xis a real
which is passed by reference.

- 14 -

)

Program Structure Chapter 2

As a general rule, pass by value parameters should be used to prevent
side affects. However, sometimes side affects are necessary. That
is, sometimes you need a change in the value of a formal parameter to
also change the value of its corresponding actual parameter. In such
a case, pass by reference must be used. Also, when passing large data
structures such as arrays, pass by reference should be used. This
speeds execution and saves memory because a pointer to the structure
is passed rather than copying the whole structure to another location.

A.3 The Function Heading

The function heading signals the start of a function block. It gives
the function a name and defines the parameters to be passed to it.
Unlike a procedure, a function has a type associated with it.
Functions, like variables, are assigned values. A function is
referenced by an expression and its value then substituted into the
expression.

Syntax of the function heading:

I
V

-->FUNCTION--> id---> parameter list--->:--> type id-->:-->

The parameter list has the same form as the parameter list for a
procedure discussed on the previous page.

Example function headings:

FUNCTION number: REAL:

FUNCTION nextstate(currentstate: INTEGER) : INTEGER:

The function "number" is a real valued function which has no
parameters. The function "nextstate" is an integer valued function
which has one parameter, also of type INTEGER. In each function, a
value should be assigned to the function name. For example,
number:=5.3 and nextstate:=currentstate + 1 could appear inside each
of the respective functions to define values for them.

Note: a function may be an ordinal type or the type REAL only.

- 15 -

Program Structure Chapter 2

B. Block Parts

A Block is composed from the following list of parts.

1. the label declarations
2. the constant definitions
3. the type definitions
4. the variable declarations
5. the common declarations
6. the access declarations
7. the procedure and function declarations
8. the statement body

The label declarations are used to declare statement labels which can
be used for branching. The constant definitions are used to give
names to numbers or strings which are constants. Constant names are
assigned values at compile time. Type definitions are used to create
and give names to data types which are not predefined. variable
declarations are used to associate variable names to specific data
types. A type defines the kind of data that can be stored in a
variable. It also defines the amount of storage required for the
variable. Variables are assigned values at run time. Common
declarations are used in the same manner as the variable declarations
to associate variable names to specific data types, but common
variables have a special property. Storage space for common variables
is created statically rather than dynamically. This means that when a
block terminates, the common variables declared in it do not become
undefined. Access declarations are used to enable a block to access a
common variable. Procedures and functions are used for modularity.
They provide the mechanism for segmenting a block into subblocks. The
statement body contains the program statements which describe the
actions to be taken on data as well as the order in which the actions
take place.

A block does not have to include all eight parts described above.
At a minimum, a block must include the two keywords BEGIN and END
which bracket the statement body. The following is an example of a
minimum complete program. It contains only the program block which is
composed of only the heading and a null statement body.

PROGRAM donothing;
BEGIN {*The statement body contains no statements*)
END.

- 16 -

(

Program Structure Chapter 2

.The order in which the eight parts appear in a block is as follows:
The first six parts may be arranged in any order. The only
requirement is that an identifier be defined before it is used. For
example, a particular type definition must textually precede a
variable declaration of that type. The only exception to this is the
definition of pointer types which are discussed in chapter 5. It is
also worth noting that there may be more than one of a particular
part. For example, there could be two separate type definition parts.
The procedure and function declarations follow any use of the first
six parts. The statement body then follows the last procedure or
function declaration.

B.l The Label Declarations

Label declarations are used in conjunction with the GOTO statement.
A label declaration defines a label which can then be used to label a
statement. A GOTO statement can then reference the label causing a
branch to the statement which is prefixed by the corresponding label.
The label declaration part is signaled by the keyword LABEL.

Syntax of the label declaration part:

---------, <--------
❖ I

-->LABEL---> integer constant--->;-->

Note:
A label must be declared in the same block in
which a GOTO statement which references it
appears. Branching outside a block is not
allowed. Also, all declared labels must appear
somewhere in the statement body.

Example label declaration part:

LABEL 100, 200, 300, 400, 500, 1000;

Syntax of labeled statement:

--->label-->: -->statement--->

Example labeled statements:

100: x:=47;
200: IF x > 500 THEN GOTO 100;

- 17 -

Program Structure Chapter 2

B.2 The Constant Definitions

The constant definitions are used to associate identifiers with
values which do not change. A constant identifier is assigned a value
at compile time and this value can not be changed. This means that a
constant identifier cannot have its value changed by an assignment
statement. The use of constant identifiers increases program
readability because meaningful names can be used in the place of
actual values. The values which can be assigned to constant
identifiers are numbers, strings, or other identifiers which are
constants. This includes identifiers which are members of an
enumeration. The start of the constant definition part is signaled by
the keyword CONST.

Syntax of the constant definition part:

; <----------
I
V 1

-->CONST---> id-->= -->constant--->; -->

Example constant definition part:

CONST low=32; high=88; pi=3.14159;
speedoflight=299792.0; separator='---------';
positive=l0; negative=-positive;
keydefinition=#61;

Note: Integer constants may also be expressed in
hexadecimal by preceding the value with the#

There is a predefined constant MAXINT which
is defined to be equal to the largest positive
value an integer can take.

- 18 -

)

Program Structure Chapter 2

B.3 The Type Definitions

Type definitions are used to create new data types. A type
definition associates a name with a user defined simple or structured
data type. The name can then be used in a variable declaration to
specify the type of the variable. Although a variable can declare its
type directly in the variable declaration part, it is nice and
sometimes necessary to have a name associated with a user defined
type. Type definitions are especially useful when using structured
types whose definitions are long and when more than one variable in
the program is to be declared of that type. Associating a name to the
type means that the type must be defined only once. In some cases,
type definitions are necessary. If comparisons are to be made between
two variables of a user defined type, then the variables must be
declared as the same type. Defining the type for each variable
separately in a variable declaration part will not work. Although the
variable declarations will look the same, the compiler will view them
as variables of two separate types. Also, declarations of variables
in the parameter list of a procedure or function must be to named
types. For example, if an array is to be passed as a parameter, the
array must be defined in a type definition and then the formal
parameter declared as that type.

The type definitions part is signaled by the keyword TYPE.

Syntax of the type definition part:

; <---------
I
V

'
-->TYPE---> id-->=--> type--->; -->

Example type definition part:

TYPE colors= (red,blue,green,orange,purple);
weekdays= (sunday,monday,tuesday,wednesday,

thursday,friday,saturday);
workdays= monday •• friday;
daysofmonth = 1 •• 31;
letters= 'A' •• 'Z';
list= ARRAY [0 •• 25] OF CHAR;
customer= RECORD

name
address
END;

: PACKED ARRAY[l •• 20] OF CHAR;
: PACKED ARRAY[l •• 40] OF CHAR;

- 19 -

Program Structure Chapter 2

B.4 variable Declarations

All variables in a program must be declared before they are used.
This is done by associating the variable name with a type. The type
can be the name of a predefined simple data type, the name of a user
defined type which has previously been defined in a type definition
part, or the type can be defined directly. The start of the variable
declaration part is signaled with the keyword VAR.

Syntax of the variable declaration part:

------------; <------------
I <--

I
V V 1

-->VAR------> id----->: -->type--->;-->

Example variable declaration part:

VAR x,y,z . REAL; .
ok . BOOLEAN; .
i, j ,k . INTEGER; .
fruit . colors; .
alpha,beta . CHAR; .
characters . list; .
mark . ARRAY [1 •• 30] OF INTEGER; .
byte . 0 • • 2 55; .
months . Cjan,feb,mar,apr,may,jun,jul, .

aug,sep,oct,nov,dec);
account . RECORD .

number, date . INTEGER; .
END;

B.5 Common Declarations

The common declaration part is used in the same manner as the
variable declaration part to associate a variable name with a specific
data type. However, declaring a variable in the common declaration
part gives it a special property. Normally, storage space for
variables is allocated dynamically. This means that the variables
declared in a block are allocated storage space when the block is
activated and the space is freed when the block terminates.
Therefore, the local variables of a block become· undefined when the
block terminates. In contrast, common variables are allocated storage
space statically at compile time. This means that the common
variables of a block retain their defined values even after the block
terminates.

- 20 -

Program Structure Chapter 2

Common variables are scoped similar to normal variables.
However, only one storage location is reserved for each common
variable name. Therefore, a common variable declared locally
within a procedure will reference the same location as a common
variable of the same name declared anywhere else in a program.

A common variable cannot be accessed in a block unless its name
appears in an access declaration of the same block. This feature
is useful for controlling access to global variables, providing
protection and better documentation of where global variables are
used. Another very valuable use for common variables is in
external procedures. A procedure which is often used by many
separate programs can be compiled separately and linked to the
programs that use it. In the case where the procedure must retain
information between activations, such as cursor position in a
graphics procedure, common variables may be used to prevent the
need for global variables.

Syntax of the common declaration part:

-----------; <-------------
, <--

I
vv 1

-->COMMON-----> id-----> : --->type--->; --->

Example common declaration part:

COMMON cursorx, cursory : INTEGER;

(see the appendix for an example using commons)

B.6 Access Declarations

Access declarations are used in conjunction with common variables.
No common variable can be referenced unless its name appears in an
access declaration of the block which references it. The order in
which common variable names appear in an access declaration is
arbitrary.

Syntax of the access declarations part:

I<--

t I
-->ACCESS------> id------>;--->

Example access declaration part:

ACCESS cursorx, cursory;

- 21 -

Program Structure Chapter 2

B.7 Procedure and Function Declarations

Procedure and function declarations create new blocks. Each
declaration forms a complete new block composed from the block parts
discussed earlier. A procedure declaration consists of a procedure
heading followed by a block. A function declaration consists of a
function heading followed by a block. Procedure and function
declarations form subblocks within the block in which they appear.
Procedure and function declarations are discussed more fully in
chapter 9.

Syntax of procedure or function declaration:

--> function heading

I I
V

-----> procedure heading----> block--->

Example procedure declaration:

PROCEDURE getvalue(first,last :INTEGER; VAR word: buffer;
VAR value: INTEGER);

(*Converts hex character string to decimal value:
buffer is a globally declared type--> PACKED ARRAY[l •• 8] OF CHAR;
word contains the hex character string
first and last are pointers into the string
value is the returned decimal value *)

VAR i,n,factor
ch

BEGIN

: INTEGER;
: CHAR;

value:= 0; factor:= l;
FOR i := last DOWNTO first DO

BEGIN
ch:= word{i];
IF ch=' 'THEN n:=0
ELSE

(*Blank character given value 0*)

IF (ch>='0') AND (ch~='9') THEN
n := ORD(ch)-ORD('0')

ELSE

(*character range 0 •• 9 *)
(*convert ch to decimal*)

IF (ch>='A') AND (ch<='F') THEN (*character range A •• F *)
(*convert ch to decimal*)

END;

n := ORD(ch) - ORD('A') + 10;
value:= value+ factor* n;
factor:= 16 * factor;
END;

- 22 -

(*hex is base 16*)

(*procedure getvalue*)
)

Program Structure Chapter 2

Example function declaration:

FUNCTION nextstate(currentstate: INTEGER) : INTEGER;
(* returns the.next state given the current state*)

BEGIN
CASE currentstate OF

1: nextstate := 3;
2: nextstate := 4;
3: nextstate := 1;
4: nextstate := 2;

END;
END; (*function nextstate*)

B.8 Statement Body

The statement body of a block contains zero or more statements which
describe the actions of the block. The statement body must start with
the keyword BEGIN and stop with the keyword END. However, since
statements may also include BEGIN and END, the statement body may
contain many occurrences of these two keywords. The statement bodies
for the three types of blocks are identical, except that the
concluding END for the program block statement body must be followed
by a-period while the concluding END for procedure and function
statement bodies must be followed by a semicolon.

Syntax of statement body: -->;
I
V I

--->BEGIN--> statements--> END---->.----->

Example statement body:

BEGIN (* begin program block statement body*)
WHILE NOT EOF DO

BEGIN
READ(x,y,z);
X := SQR(x); y := SQR(y); z := SQR(z);
WRITE('squaredata' , x, y, z);
END;

END. (* end of program*)

- 23 -

Simple Data Types Chapter 3

SIMPLE DATA TYPES

The simple data types are the primitive data types of the language.
They form the base for building structured types. The simple data
types consist of ordinal types and the REAL type.

A. Ordinal Types

Ordinal types are characterized by a linear ordered set of distinct
values which can be mapped on the set of natural numbers. This
mapping is actually an enumeration of all the values which the type
can take. The predefined ordinal types are INTEGER, CHAR, and
BOOLEAN. New ordinal types can be defined by enumerating all the
values which the type can take. In addition, new ordinal types may be
defined as subranges of other ordinal types.

A.1 The Type INTEGER

variables declared as type INTEGER may take on values in the range
-32768 to +32767. All the arithmetic and relational operators can be
used with integer constants and variables. However, the relational
operator IN is used only in conjunction with sets (see chapter 4).

Note: Integer calculations which cause an overflow will not generate
an overflow error. (eg. MAXINT + 1 = -32768)

Syntax of type INTEGER:

-->INTEGER-->

Example declaration:

VAR i,j,k: INTEGER;

Example integer constants:

59 -1 0 329 -10000

- 24 -

29872

)

Simple Data Types Chapter 3

A.2 The Type CHAR

Variables declared as type CHAR can take single characters as values.
The set of valid single characters is defined by a character set. All
characters have an associated ordinal number in the range Oto 255. A
table of ASCII characters with associated ordinal numbers is listed in
the appendix. There are two functions which may be used in
conjunction with the character set. The function ORD(character)
returns the ordinal number of the character specified. The function
CHR(ordinal number) returns the character associated with the
specified ordinal number. These are known as transfer functions
because they are used to transfer a·character value to an integer
value and vice versa. Constants of type CHAR are denoted by using
single character strings. All relational operators may be used with
variables and constants of type CHAR.

~

Syntax of type CHAR:
-->CHAR-->

Example declaration:

VAR alpha, beta

Example character constants:

'9' 'a' '#9F'

A.3 The type BOOLEAN

: CHAR;

Example relational expression:

'A'< 'B'

The boolean type represents logical data. A logical value is
represented by the predefined identifiers FALSE and TRUE. These are
the only possible values of a boolean variable or expression.

Syntax of type BOOLEAN:

-->BOOLEAN-->

The boolean type is defined by the following enumeration:
BOOLEAN= (FALSE, TRUE)

The boolean operators AND, OR, and NOT take boolean operands and
yield boolean results. The relational operators=,<>,<=,<,>,
>=, and IN all yield boolean results. See chapter 7 for examples of
boolean expressions.

Example declaration: Boolean Constants:

VAR switch : BOOLEAN; FALSE TRUE

- 25 -

Simple Data Types Chapter 3

A.4 The Enumerated Type

Pascal allows you to define your own ordinal types. A new type ~ay
be created by enumerating all the values that the type may take. This
is done by giving the new type a name and listing the values which the
new type can take.

Syntax _of the enumerated type:

, <--

❖ I
--> C ---->id---->) -->

Example definitions of enumerated types:

names= {Fred, Joe, Nancy, Susan);

foods= {hotdog, hamburger);

The values listed are identifiers. The order in which the
identifiers are listed defines a relationship. The identifiers can be
thought of as being mapped on to a set of natural numbers. The first
identifier maps too, the second to one, the third to two, and so on.
This implies that identifierl < identifier2 < identifier3 ••• <
identifierN. For example, consider the predefined type:

BOOLEAN= {FALSE,TRUE)

The boolean value FALSE is less than the boolean value TRUE because
FALSE appears in the list before TRUE. This kind of ordered
relationship applies to any enumerated type. Consider the type
definition:

colors= (red, blue, green)

By this definition, a variable declared as type colors can take on
the the value red, blue, or green. The definition also implies that
red< blue< green.

The ordering means that enumerated values can be used in relational
expressions. It also means that they may be used for range
specifications. For example, consider the FOR statement. The range
of the loop control variable is defined by specifying a starting and
stopping value. These starting and stopping values could be the
values of an enumerated type. For example, if color has been declared
as type colors, the following statement is valid:

FOR color:= red to green DO •••••

- 26 -

Simple Data Types Chapter 3

A.5 Subrange Types

A subrange type is simply a type defined to take on a subset of the
values representing some ordinal type.

Syntax of the subrange type:

-->constant--> •• --> constant-->

The use of subranges can sometimes save memory. For example, an
integer variable whose values are always in the range of Oto 255
could be declared as a subrange of the type INTEGER. You might define
a new type as follows:

byte = o •• 255

Now, variables declared as type byte would be allocated 8 bits of
storage rather than the 16 bits which is allocated for variables
declared as type INTEGER. The compiler allocates the minimum amount
of storage required to represent the range of values specified by a
subrange type.

The use of subranges can better document a program by defining the
range of valid values a variable declared as the subrange type can
take on. Subrange types are also often used in conjunction with SET
types which are discussed in section B of chapter 4.

B. The Type REAL

The type REAL is used to represent fractional numerical data. The
implementation of reals is machine dependent. Information on the
size, range, and accuracy of reals is discussed in the System
Implementation Manual. See section B of chapter 1 for the syntax of
real constants.

Syntax of REAL:

--> REAL -->

Example declaration:

VAR X I y I Z : REAL;

Example real constants:

2.3 -129.345 5.496E-14

- 27 -

-7983.851D+23

Structured Data Types Chapter 4

STRUCTURED DATA TYPES

There are four kinds of structured data types: the ARRAY, the SET,
the FILE, and the RECORD. These four kinds of data types represent
four different ways of organizing the simple data types into a data
structure. A data structure can also include other data structures as
components. It is then possible to build very complex structures from
the basic simple data types. All structured data types can be packed.
This means that the most compact form of storage possible will be
used. Packing a data structure can sometimes save memory. However,
packing may cause access time to increase. The decision to pack or
not depends on the specific application. The keyword PACKED signals
the compiler to pack the data type into its most compact form. When
structured types contain other structured types, the keyword PACKED
must be applied to the innermost structure as well as the outermost to
have any effect.

A. The Type ARRAY

The ARRAY is a data type which defines a structure composed of a
fixed number of data elements which are all of the same type. The
data elements can be defined to be of any one type. They could be
defined as one of the simple types or as one of the structured types,
including ARRAY. Arrays can be defined to be of any dimension. The
number of dimensions, the number of elements in each dimension, and
how the elements are accessed is. specified by an index definition.
The index definition consists of a list of ordinal types(excluding the
type INTEGER for the reason that this would create an array too large
to fit in memory). The number of types specified corresponds to the
number of dimensions of the array.

Syntax of the type ARRAY:

----------- ------, <-------
! t I

--->PACKED---> ARRAY--> [--->ordinal type--->]--> OF--> type-->

- 28 -

)

)

Structured Data Types Chapter 4

Example declarations:

TYPE table= ARRAY [0 •• 5,1 •• 10] OF INTEGER;
colors = (red, blue, green, yellow);

VAR report ARRAY [1 •• 20] OF table;
day . ARRAY [1 •• 365] OF REAL; .
class . ARRAY [0 •• 8,0 •• 5] OF INTEGER; .
chart . ARRAY [colors] OF INTEGER; .

Elements of variables declared as type ARRAY are accessed by
specifiying the variable name and ltsting expressions which evaluate
to ordinal values that fall into the range of the ordinal types of the
index definition.

Examples of accessing array elements:

report[5,3,6] day[40] class[0,0] chart[red]

B. The Type SET

A set is a collection of distinct elements which are all of the same
ordinal type. The elements of a set are called set members. There
may be up to 256 members in a set. The 256 member limit causes the
restriction that a set can not be defined to be of ordinal type
INTEGER. Also, subranges of type INTEGER which include negative
integers are not allowed as set base types. A set can have no members
in which case it is called an empty set.

Syntax of the type SET:

-->SET--> OF--> ordinal type-->

Example declarations:

TYPE days= (sunday, monday, tuesday, wednesday,
thursday, friday, saturday);

VAR lowercase, digits, special
schooldays, workdays

day

: SET OF CHAR;
: SET OF days;
: days;

A variable declared as type SET can take on any values which are
subsets (including the empty set) of the values defined by the type of
the set. The type of the set is specified after the keyword OF.

Set values are denoted by listing set members within square
brackets. The individual members can be specified as ordinal
expressions.

- 29 -

.1.

Structured Data Types Chapter 4

Syntax of set notation:

--------------, <-----------------

I
V V V

--> [-----> ord expr ---> •• --> ord expr ------>] -->

The •• notation between two members specifies that all values in
between are also to be included as members. For example, [0 •• 3,7 .• 10)
would denote a set with members 0,1,2,3,7,8,9,10. The empty set is
denoted by[].

Example assignments to set variables:

schooldays:= [monday, wednesday, friday];
workdays := [monday •• friday];
lowercase:= ['a' •. 'z'];
digits := ['0' •• '9']
spec i a 1 : = [• * • , • % • , , @ • J

The relational operators which are applicable to sets are C IN,=,
<>,<=,and>=)

IN

=

A single element can be tested to see if it is
a member of a set. The operator IN is used for
this testing of set membership. This operation
evaluates to TRUE if the single element on the
left is a member of the set on the right.

Two sets can be compared to see if they contain
exactly the same members. The operator= is used
to test for set equality. If each member of each
set is also a member of the other then the
operation evaluates to TRUE~

<> Two sets can be compared to see if they do not contain
exactly the same members. The operator<> is used
to test for set inequality. If any member of either
set is not also a member of the other then the operation

)

evaluates to TRUE. J

- 30 -

Structured Data Types Chapter 4

<=

>=

A set can be compared to another set to see if the
first set is a subset of the second set. The
operator<= is used to test for set inclusion. If all
the members of the set on the left are also members
of the set on the right then the operation evaluates
to TRUE.

A set can be compared to another set to see if the
first set is a superset of the second set. The
operator>= is used to test for set containment.
If there are no members in the set on the right which
are not also members of the set on the left then the
operation evaluates to TRUE.

Example use of relational operators:

IF day IN workdays THEN gotowork; (*gotowork is a procedure*)
IF character IN digit THEN WRITE(character);
IF workdays>= schooldays THEN noweekendclasses;

Relational Expression

monday IN [monday, tuesday]
'A' IN ['a' .. 'z']

[1 , 2 , 3 1 >= [0]
[1 , 2 , 3] >= [2]
[I% I] <= [I* I I I% I]

[] <= [tuesday]

Evaluation

['a', 'f', 'g'] = ['a', 'f', 'k']

TRUE
FALSE
FALSE
TRUE
TRUE
TRUE
FALSE
TRUE [11 = [1]

The arithmetic operators which are applicable to sets are (+, - ,
and *) .

+
Two sets can be combined to form a third set
containing all elements that are members of either
set. The operator+ performs the union of two sets.

A set can be formed as the difference between two sets.
The operator - performs set difference. The result
is a set containing all members of the set on the left
which are not also members of the set on the right.

- 31 -

Structured Data Types Chapter 4

*
A set can be formed which contains only the members
which exist in both of two other sets. The operator*
performs the intersection of two sets.

Examples:

Expression

(1, 2, 3] + [4, s, 6]
[l, 2, 3] + [2, 3, 41

(1, 2, 3] - [2]
(1, 2, 31 - [4]

[l, 2, 31 * [4, 5, 61
[1, 2, 3] * [2, 3, 4]

C. The Type FILE

Result

Cl, 2, 3, 4, 5, 61
[l, 2, 3, 41

[1, 31
[l, 2, 31

[]
[2, 3]

The data type FILE provides the link between a program and the
peripheral equipment of the computer system. Variables declared as
type FILE represent logical files. Input and output operations always
refer to logical files. Each logical file has an associated physical }
file. The physical file is the actual device to which an operation is
directed. A physical file is a device such as a terminal, printer,
disk file, etc ••• Since all input and output operations reference
logical files rather than physical files, a programs input or output
can be redirected simply by associating the logical file with a
different physical file. The method of associating logical files to
physical files is discussed in the System Implementation Manual.

File data elements can be of any type except FILE or structured
types containing a component of type FILE.

Structured variables (eg. array or record variables) may contain
components of type FILE. However, the I/0 routines (see chapter 10)
will accept only simple variable names. For example, file names
such as "customer.filel" or "files[2)" are not accepted by the I/0
routines. See the appendix for an example of how to work around this
restriction.

- 32 -

Structured Data Types Chapter 4

Syntax of type FILE:

-->FILE--> OF--> type-->

Input and output can be greatly simplified by declaring variables as
files of structured types. For example, a complete record can be read
or written to a file of records simply by specifying the file variable
name and the record variable name as parameters to an input or output
procedure.

Example of file declarations:

Type sales= RECORD
salesman: PACKED ARRAY[l •• 20] OF CHAR;
quantitysold: INTEGER;
END;

VAR salesfile: FILE OF sales;
numbers : FILE OF INTEGER;

The data elements of files declared as above are read and written in
binary format. Binary format is the form in which the data is
actually stored in memory. No translation of the data is done during
the I/O process to a character readable form. The advantage of this
type of I/O is speed of data transfer and minimization of disk storage
requirements. The disadvantage is that the data is in a non-readable
form.

A special type of file is provided for handling character formatted
data. In a TEXT file, data is stored as characters. Input and output
then involves a translation to and from the internal binary data
format.

C.l The type TEXT

There is a predefined type of file called TEXT. Text files have
special characteristics. Unlike other file types, a text file is
divided into lines. There is some mechanism which is implementation
dependent which marks the separation between lines, each line being a
sequence of characters. The data types which can be input from and
output to text files are not restricted to characters only, even
though a text file is actually a file of characters. The characters
of a text file may represent string, integer, real, or boolean values.
The Pascal I/O routines make the appropriate character to binary and
binary to character conversions with TEXT files. There are two
predeclared variables of type TEXT (INPUT and OUTPUT). These are the
default parameters for the I/O procedures and functions discussed in
chapter 10.

- 33 -

Structured Data Types Chapter 4

Example declarations:

infile, outfile: TEXT;

There are two built in procedures and one built in function which
apply only to text files.

WRITELN

READLN

EOLN

The procedure WRITELN terminates the current line
and positions a file pointer to the next line. If
any variables are specified to be output by the
WRITELN, they are output first and then the file
pointer is advanced to the next line.

The procedure READLN causes the file pointer to be
positioned to the beginning of the next line. If any
variables are specified to be input by the READLN,
they are input first and then the file pointer is
advanced to the next line.

The function EOLN is a boolean function which
evaluates to TRUE when the end of a line has been
reached. At all other times it evaluates to FALSE.

(See chapter 10 for details)

D. The type RECORD

The type RECORD is characterized by a fixed number of elements which
are called fields. The fields of a record can be of different types.
Record field identifiers can be declared to be of any type, including
RECORD. Therefore, records can be nested.

Syntax of the type RECORD:

I I
V V

--->PACKED---> RECORD--> field list---> ; --->END-->

- 34 -

)

Structured Data Types Chapter 4

The field list describes the individual components of a record. All
the field identifiers within a record must be unique. However, field
identifiers are scoped within the record itself which means that an
identifier outside the record definition can be identical to a field
name within the record. The field list consists of two separate
parts, a fixed part and a variant part. A record can contain either
or both of these two parts. If both parts are present, the fixed part
must precede the variant part. The fixed part refers to the part of
the record which is always referenced in the same way (ie. the
fields are fixed}. The variant part refers to the part of the record
which may be referenced in multiple ways (ie. the fields may vary).

Syntax of field list:

I
V

---> fixed part--->;---> variant part--->

I

Syntax of the fixed part of a record:

--------------; <-----------
, <---

I
V V 1

------>id------>: -->type--->

Example record using fixed fields:

RECORD
business: PACKED ARRAY[l •• 25] -OF CHAR;
location: RECORD

END;

street,
city,
state
zip

END;

PACKED ARRAY[l •• 15] OF CHAR;
: INTEGER;

- 35 -

Structured Data Types Chapter 4

A particular field of a record variable is referenced by the variable
name followed by the field name. A period separates the two names.
If the field name is itself a record, then a field within the nested
record is referenced by appending a period and the field name to the
other two names.

Syntax of record variable referencing:

I
V

--> record variable id--->.---> field id--->

Example referencing:

Assume that customer is a record variable as defined
on the previous page,

then

customer.business
customer.location

references first field
references second field

The nested fields of the field "location" are referenced by:

customer.location.street
customer.location.city
customer.location.state
customer.location.zip

D.l Record Variants

Sometimes it is useful to be able to define a storage area in a
record which can be accessed in multiple ways. Record variants
provide the ability to do this. In certain applications, they can
simplify a program and save storage space at the same time.

- 36 -

)

Structured Data Types Chapter 4

A record variant defines a fixed size storage area of a record which
can be accessed in multiple ways. The size is determined by the
variant alternative which requires the largest amount of storage
space. The variant is defined using a form similar to that of the
CASE statement.

Syntax of the variant part of a record:

I
V

-->CASE---> tag field id--> --->type--> OF

-------------------; <-----------------------------
------, <----

v ❖ I
--------->constant--->: --> C --> field list-->)--->

Each alternative way of accessing the storage area of a variant is
defined by a field list. All field names within the variant
definition must be unique. The storage area can then be accessed in
the desired way simply by specifying the appropriate field name.
There are two forms of the variant. In one form, a tag is specified
and becomes a field in the record. The tag field resides in the
record just prior to the variant storage area. The purpose of the tag
field is to store a value which specifies for each record the
alternative of the variant which is in effect. The other form omits
the tag field which in some cases is not needed.

Example using no tag field:

PACKED RECORD
CASE BOOLEAN OF

FALSE: (whole
TRUE: Cbytel,byte2

END;

- 37 -

:INTEGER);
:0 •• 255;);

Structured Data Types Chapter 4

This variant definition would define a storage area of two bytes
(assuming an integer is 16 bits) which is the largest amount of
storage required for either of the two field lists. You could then
access the whole two byte storage area as an integer or you could
access each individual byte of the integer. The storage could be
pictured as follows:

byte!
whole or

byte2

J

The type BOOLEAN was chosen as the selector of the CASE because it
defines. two possible values which is what is needed to specify the two
alternatives. Another type could have been defined and used just as
well. With the variant defined as above, you could now reference the
integer or the bytes simply by specifying the appropriate field name:
whole, bytel, or byte2. For example, if "number" is a variable
declared as this record type, then "number.whole", "number.bytel", and
"number.byte2" are the possible ways of referencing this storage area.
Care must be taken when using variants for this purpose. The way in
which the fields of the different forms of the variant overlap one
another is implementation dependent. Also in the above example, which
byte would be the low byte and which would be the high byte is)
implementation dependent. {See the System Implementation Manual)

Example using tag field:

Assume the type definition:
itemtype = (circle, rectangle, triangle)

PACKED RECORD
xcoordinate, ycoordinate :REAL;
CASE item :itemtype OF

circle :(radius
rectangle :(length,width
triangle :(baselength

angle
END;

- 38 -

:REAL);
:REAL);
:REAL;
: INTEGER);

Structured Data Types Chapter 4

This record definition contains a fixed part as well as a variant
part with a tag field. The storage allocation for this record could
assume the following structures:

xcoordinate xcoordinate xcoordinate

ycoordinate ycoordinate ycoordinate
tag or or

field--> item item item

radius length base length

width angle

The storage allocated would be the amount required to store the
two real numbers of the fixed part, the tag field, and the two real
numbers of the rectangle field list. The other field lists of the
variant require less storage than the rectangle list. The information
of which alternative of the variant is in effect can now be stored as
part of each record via the tag field. The tag field is referenced in
the same manner as the other fields.

Note:
Variants can be nested. That is, a variant can
contain a definition of another variant. However,
there can be only one variant at any one level
and the variant definition must follow any fixed
fields of a record.

- 39 -

Pointer Data Type Chapter 5

POINTER DATA TYPE

The pointer data type is used in conjunction with dynamic storage
allocation. This refers to the creation of storage space for
variables during program execution. This is very useful when the
amount of data storage a program will require is unknown. The use of
pointer data types provides the ability to allocate storage as it is
needed. variables for which storage is dynamically created cannot be
referenced in the usual manner. The reason is that they actually have
no identifiers of their own. Instead, they are referenced through the
use of pointers. A pointer is actually a variable which points to the
location in memory of a dynamically created variable.

The definition of a pointer type specifies the data type for which
storage will be allocated. The data type then determines the amount
of storage required for each allocation. The definition of a data
type does not have to precede the definition of a pointer type which
references it. This is the only exception to the rule that
identifiers must be defined before they are used. This allows for a
field of a record to be declared as a pointer to the record itself.
Either the symbol - or the symbol@ may be used to signify a pointer
type.

Syntax of type pointer:

---> ...

I I
V

-------> @ ·-------> type id -->

Example pointer declarations:

TYPE transptr = @transaction;
transaction= RECORD

item
price
link
END;

:INTEGER;
:REAL;
:transptr;

In the above declaration, transptr is a pointer type defined to be a
pointer to the data type transaction. Transaction is a record
consisting of three components (item, price, and link). Dynamic
variables of the type transaction can be created through the use of
pointer variables of type transptr. Notice that link is declared to
be of type transptr. This component of the record is a pointer
variable which may point to another dynamic variable of type

~,

transaction. Therefore, a linked list of transaction records can be)
formed with the link field of each record pointing to the next record. ·

- 40 -

Pointer Data Type Chapter 5

The predeclared procedure NEW is used to allocate storage for dynamic
variables. It has one argument which is a pointer variable. The NEW
procedure allocates the amount of storage required by the data type
associated with the pointer and assigns the address of the allocated
storage to the pointer. The pointer is then used to reference the
allocated storage. For example, consider the declaration:

list: transptr;

Then the statement NEW(list) would allocate the amount of space
required to store the three components of a transaction record at some
location in available memory and assign the location in memory to the
variable list. The available memory is called the heap and its size
is set at run time. (See the System Implementation Manual)

References to a variable which is pointed to by a pointer are made by
following the pointer name with either the symbol A or the symbol@.
In the above example, list@ would reference the dynamically created
transaction record.

Syntax of referencing dynamic variables:

--> A

I
V I

--> pointer id---->@------->

Example referencing of dynamic variables:

list@ references whole record

list@.item
list@.price references individual fields
list@.link

list@.link@ references record pointed to by link field

list@.link@.item
list@.link@.price references individual fields
list@.link@.link

- 41 -

Pointer Data Type Chapter 5

When a dynamically created variable is no longer needed, it may be
disposed of. This is the process of freeing the space consumed by the
variable for other uses. The predeclared procedure DISPOSE is
provided for this purpose. Like the NEW procedure, it has one
parameter which is a pointer. The DISPOSE procedure frees the memory
allocated to the variable pointed to by the pointer. Referring to the
above example, DISPOSE(list) would free the amount of memory which was
allocated to the dynamic transaction variable.

A predefined constant NIL can be used to assign a value to a
pointer. Other than using the procedure NEW, assignment to the
constant NIL is the only way of giving a pointer a defined value. If
a pointers value is NIL, then it does not point to a dynamic variable.
This is often used with linked lists to give the pointer of the last
element in the list a defined value. It provides a way of detecting
when the end of the list has been reached.

Example procedures using pointer variables:

PROCEDURE create(VAR translist: transptr);

(* Creates a new transaction

VAR

Adds the transaction to the top of a transaction list
Returns a pointer to the new transaction via translist
New transaction becomes top of transaction list*)

trans (*new transaction pointer*)
transptr;

(*note: translist should be initialized to NIL*)

BEGIN
NEW(trans); (*create new transaction*)
trans@.link:=translist; (*new transaction points to old top of list*)
translist:=trans; (*new transaction becomes top of list*)

END; {*procedure create*)

- 42 -

Pointer Data Type Chapter 5

PROCEDURE destroy(translist, trans: transptr);

(* Removes the transaction pointed to by trans from the list
Recovers the memory used by the transaction *)

VAR
lead,
trail

BEGIN
lead:=translist;

(*points to next transaction in list*)
(*saves location of current transaction

while lead is advanced to the next
transaction*)

transptr;

While lead<> trans DO (*search for trans*)
BEGIN
trail:=lead;
lead:=lead@.link;
END;

(*save pointer to current transaction*)
(*advance pointer to next transaction*>

IF translist <> trans THEN (*check if trans is at top of list*)
trail@.link:=lead@.link (*link around transaction*)

ELSE
translist:=lead@.link;

DISPOSE(trans);
END;

(*new top of list*)
(*recover memory*)
C *destroy*)

- 43 -

Operators Chapter 6

OPERATORS

There are four categories of operators: arithmetic, relational,
boolean, and type transfer.

A. Arithmetic Operators

The following table lists all the arithmetic operators, the
operations they perform, the type of operands which may be used, and
the type of result of the operation. Mixed mode arithmetic is
supported. (eg. it is allowed to have an integer value added to a
real value) Also, automatic truncation occurs when an integer variable
is assigned a real vaLue.

Operator Operation Type of Operands Type of Result

addition integer, real integer, real
+

sets of compatible same type as
set union types the larger set

subtraction integer, real integer, real
-

sets of compatible same type as
set difference types the larger set

multiplication integer, real integer, real
*

set sets of compatible same type as
intersection types the larger set

I division integer, real real

truncated
DIV division integer integer

MOD modulus integer integer

Note: For sets to be of compatible types they must
have identical base types, one base type must
be a subrange of the other, or they may both
be subranges of the same base type.

- 44 -

)

Operators Chapter 6

B. Relational Operators

All relational operators perform operations which yield Boolean
results. The result is always either TRUE or FALSE. In general, both
operands of a relational operator must be expressions of identical
type, but the types REAL, INTEGER, and subranges of integer may be
mixed.

(Relational operations may be performed on any types except files)

Operator Result of Operation
------------ -----------------------

= true if left operand is equal to right

<> true if left operand is not equal to right

< true if left operand is less than right

> true if left operand is greater than right

<= true if left operand is less than or equal to right

>= true if left operand is greater than or equal to right

To compare strings, the ordinal numbers of the characters composing
both strings are compared to one another until a pair of characters
are different or until the end of the strings is reached. If there
are no character pairs which differ then the strings are equal.
Otherwise, the first pair of characters which differ determine the
relationship. The string whose character ordinal number is the
largest is greater than the other string.

Operation Result

'abc' = 'cdf'
'abc' < 'abd'
'bab' > 'adf '

- 45 -

FALSE
TRUE
TRUE

Operators Chapter 6

The following operator tests for set membership. The left operand
may be any ordinal type and the right operand may be any set of the
same ordinal type.

IN true if left operand is a member of the right
(See section B of chapter 4)

c. Boolean Operators

The boolean operators, like the relational operators yield boolean
results. The result is always either TRUE or FALSE. The operands of
a boolean operator must be boolean expressions. ·

Operator Result of Operation

OR true if either one or both of the operands is true

AND true only if both operands are true

NOT true if operand is false

Operation Result
------------- ------- ... -

FALSE OR FALSE FALSE

TRUE OR FALSE TRUE

FALSE OR TRUE TRUE

TRUE OR TRUE TRUE

FALSE AND FALSE FALSE

TRUE AND FALSE FALSE

FALSE AND TRUE FALSE

TRUE AND TRUE TRUE

NOT TRUE FALSE

NOT FALSE TRUE

- 46 -

(

Operators Chapter 6

D. Operator Precedence

Operator precedence. defines the order in which operations take place
within expressions. In general, expressions are evaluated from left
to right. However, operations of higher precedence are performed
before operations of lower precedence. All operators are ranked by
precedence. Parentheses have the highest precedence and may be used
to alter the normal order of evaluation. Nested parentheses are
evaluated from the inside out.

Following is a list of the operators arranged by precedence.
Operators listed on the same line have equal precedence. The
precedence has been slightly altered from the Jensen & Wirth standard
to eliminate excessive use of parentheses. The operators NOT, AND,
and OR have been altered. In the standard, NOT immediately precedes
the unary operators, AND is the same precedence as* etc., and OR.
is the same precedence as+,-. This alteration should not effect
porting standard Pascal to TRS-80 Pascal. However, if porting from
TRS-80 Pascal to some other Pascal, you should parenthesize expressions
just as you would had the precedence not been altered.

Highest
Precedence-->()

+, when used as unary operators

*,II DIV, MOD

+ I

=,<>I<,>,<=,>=, IN

NOT

AND
Lowest

Precedence--> OR

Operation

8+3*4

10-8/4*2

5 MOD 10-5

3<2 OR 6>8 AND TRUE

NOT 7*2<5

Equivalent To

8+(3*4)

10-((8/4)*2)

(5 MOD 10)-5

(3<2) OR ((6>8) AND (TRUE))

NOT ((7*2)<5)

Result

20

6

0

FALSE

TRUE
~---------------------------~~--~-------~~---------------~---

- 47 -

Operators Chapter 6

E. Type Transfer

The type transfer operator is used to temporarily change the type of
an existing variable. This is useful when there is a need to
reference a variable in a manner which would normally not be allowed
by Pascal. For example, you might wish to access the lower and upper
bytes of an integer variable. The type transfer operator allows ¥Ou to
access parts of variables. Also, it provides a mechanism for avoiding
compiler type checking. This may be used in some cases where parameters
of differing types must be passed to a procedure.

Syntax of type transfer:

--->variable--->::---> type id--->

A type transferred variable may be used wherever a variable is
allowed. Regardless of its original type, the type transferred
variable is then accessed according to the type indicated. The type
transfer operator tells the compiler to treat the variable as if it
were of the new type. No data conversion takes place. The variable
is simply referenced as if it were of the new type. Type transferred
variables must adhere to the same type matching rules as normal
variables.

Example use of type transfer operator:

TYPE byte= 0 •• #FF;
integrec = PACKED RECORD

upper, lower
END;

pointer= @integrec;

:byte;

VAR number: ARRAY[l •. 10] OF INTEGER;
integr: integrec;
address: pointer;

Valid type transfer operations:

integr.upper := number[l]::byte;
number[l]::byte := integr.lower;
READ(integr::INTEGER);
number[S] := address::INTEGER;
address::INTEGER := 25 + number[3];

The fundamental use of type transfer is to overlay a type template on
a data structure so that components of the structure may be treated as
if they were of any desired type. This requires a precise
understanding of how the compiler represents the data type (how it is
stored) in order to insure the operation does what was intended.

)

Because of this, it should be used with caution and only when J
necessary. (See the System Implementation Manual)

- 48 -

Expressions Chapter 7

EXPRESSIONS

An expression is a variable, a constant, a function call, a set
notation, or a combination of these operands with a description of the
operations to be performed on them. The operators and operands of an
expression define an implicit type for the expression. When
evaluated, the expression yields a value of that type. For example,
an integer expression is composed of operands and operators which when
evaluated yield an integer result, a real expression yields a value of
the type REAL, an ordinal expression·yields a value which is of one of
the ordinal data types, etc •••

An expression can be just a simple expression or it can be a
boolean expression. A simple expression can yield a value of any data
type. A boolean expression is composed of simple expressions but
always yields a value of the type BOOLEAN.

Syntax of expression:

--> boolean expression

I I
V

----> simple expression ------>
Syntax of simple expression:

--> - --- - <--

--> + ---1 1--- + <--
V V

-------------------->term---->

Syntax of term:

MOD<-­

DIV <-­

/ <--

* <--
V

----->factor----->

- 49 -

Expressions

Syntax of factor:

--->

--->

--->

--->

set notation

function call

variable id

constant
V

----> (-->expression-->)---->

Chapter 7

For the syntax cf set notation, refer to the structured data type
SET. ·A function call has the same form as the procedure statement.
The only difference is that a procedure call is a statement while a
function call is a part of an expression. Remember that a function
has a type associated with it. When a function call is encountered in
an expression, the named function is activated. Somewhere in the
function a value is assigned to the function name. When the function
terminates, the value assigned to it is substituted in the expression
for the function call.

Note: a function may be an ordinal type or the type REAL only.

Syntax of a function call:

------, <-----
t I V

---> function id---> (--->expression--->) --->

Example function calls:

salary

payment(interestrate,years)

sum(a+b)

- so -

)

)

Expressions

Example simple expressions:

Expression

time

Result

same type as time

set

Chapter 7

weekday+ [saturday,sunday]

12*payment(interestrate,years) integer or real depending on
type of function "payment"

entry MOD size

-10 DIV 4 + 9.2/6 -45

(varl+var2)*153/(var3-var4)

Syntax of boolean expression:

OR<------
I
V 1

----> boolean term---->

Syntax of boolean term:

------AND<-------

❖ I
----> boolean factor---->

Syntax of boolean factor:

integer

real

real

-------- --> relational expression

I I I V V
---->NOT-------------> factor--------------->

note: factor must be of type BOOLEAN

- 51 -

Expressions

Syntax of relational expression:

--> =

--> <

--> >

--> <>

--> <=

--> >=

Chapter 7

V
---> simple expression----> IN----> simple expression--->

Example boolean expressions:

a=b OR c<d AND switch

nl + n2 >= 20 ANO n3-n4 <= 11

NOT here OR there

NOT alpha< beta AND gamma<> 'R'

number IN [1 •• 15] OR NOT letter IN ['a' •• 'z']

- 52 -

)

)

Statements Chapter 8

STATE..~ENTS

Statements are the Pascal sentences that describe the actions and
logic of a program. Statements reside in the statement body part of a
block.

A statement may be labeled or unlabeled. A labeled statement is
used in conjunction with the GOTO statement. If a statement is
labeled, the label must be declared in the LABEL declaration part of
the block in which the statement appears.

Syntax of a statement:

I
V

--->label--->:---> unlabeled statement--->

Syntax of an unlabeled statement:

--> procedure statement

--> GOTO statement

--> WITH statement

--> CASE statement

--> IF statement

--> REPEAT statement

--> WHILE statement

--> FOR statement

--> compound statement

--> assignment statement
V

---------------------------------->

- 53 -

Statements Chapter 8

A. The Assignment Statement

The assignment statement is used to assign values to variables and
function identifiers.

Syntax of the assignment statement:

--> function id

I I
V

----> variable id ------> := --> expression -->

The action of the assignment statement is to give the variable or
function identifier on the left side of the equal sign, the value of
the evaluated expression on the right side. The variable may be of
any type. In general, the type of the variable or function
must be the same as the type of the evaluated expression. ~
However, there are some exceptions. An identifier of type REAL may be
assigned a value which is an integer or a subrange thereof. One side
may be a subrange of the other but the value to be assigned should be
in the range of the left side. If the identifier on the left side is
a SET type, it may be assigned to a set which differs in type as long
as the set members of the right side are allowable members of the set
on the left side.

Example assignment statements:

Assignment

a:= 10

X := 100.5 + 49 + 87/12

y := abs(l0*z-30.3)

test:= sample< 10

left hand side identifier types

integer or real

real

real

boolean

- 54 -

J

Statements Chapter 8

B. The Compound Statement

Statements which are bracketed by the two keywords BEGIN and END make
up what is termed a compound statement. The compound statement is
used in places where more than one statement is required. The
compound statement is essential for most of the control structures of
Pascal. For example, the FOR statement is a control structure used
for executing a statement repeatedly for a specified number of times.
The compound statement provides the ability to use this construct for
executing a sequence of statements rather than just one.

Syntax of the compound statement:

; <----
I
V 1

-->BEGIN---> statement---> END-->

Example compound statement:

BEGIN
a:= b * c;
d := a/10 + 16.9;
e := d - 28.3 + 14;

END

C. Repetitve Statements

Repetitive statements are the structures used for loop control. They
specify that a statement or sequence of statements is to be executed
repeatedly until some terminating condition occurs. Pascal provides
three such control structures.

- 55 -

Statements Chapter 8

C.l The FOR Statement

The FOR loop is used when a statement is to be executed a predefined
number of times. The FOR loop is characterized by a loop variable
which serves as a counter for controlling the number of times a
statement is executed. The counter has defined starting and ending
values which are ordinal expressions. The expressions are evaluated
once upon entry into the loop. At the beginning of each time through
the loop, the counters value is compared to the ending value to
determine whether or not to end execution of the FOR. At the end of
each time through the loop the counters value changes by 1. If the
keyword TO is used, the counter is incremented each time through the
loop, while the use of.the keyword DOWNTO causes the counter to be
decremented. The loop is terminated when the counter has incremented
or decremented past the ending value. The FOR statement is not
executed if the counters starting value is such that the ending value
would never be reached. For example, if the starting value was -1,
the ending value was 2, and DOWNTO was used, the FOR statement would
not be executed.

Note:
The compiler option FORDECL may be used to cause
the compiler to generate temporary variables for
FOR loop counters. When this option is used, it
is not necessary to declare the counter variable.

Syntax of the FOR statement: (counter must be ordinal type)

--> DOWNTO

I I
V

-->FOR--> counter id-->:=--> ord expr ------>TO---------

I
---> ord expr -->DO--> statement-->

Example FOR statements:

FOR i := 1 TO 30 DO WRITELN(' this gets written 30 times')

FOR j := first DOWNTO last DO
BEGIN
initialscore[j] := O;
time[j] := 60;
END

- 56 -

Statements Chapter 8

C.2 The WHILE Statement

The WHILE statement uses a boolean expression to control repeated
execution of a statement.

Syntax of the WHILE statement:

-->WHILE--> boolean expr -->DO--> statement-->

The evaluation of the boolean expression precedes the execution of
the statement. If the expression evaluates to TRUE, the statement is
executed and then the expression is reevaluated. This loop continues
until the expression evaluates to FALSE. The first occurrence of a
FALSE evaluation causes termination of the WHILE statement.

Example WHILE statements:

WHILE NOT EOLN DO READ(character)

WHILE (a<b) AND (b<c) DO
BEGIN
WRI'rELN(a,b,c);
a:= a+ l;
C := C - l;
END

C.3 The REPEAT Statement

The REPEAT statement, like the WHILE, uses a boolean expression to
control repeated execution.

Syntax of the REPEAT statement:

; <----
I
V 1

-->REPEAT---> statement---> UNTIL--> boolean expr -->

- 57 -

Statements Chapter 8

The REPEAT statement is defined such that a sequence of statements
which are bracketed by the two keywords REPEAT and UNTIL will be
executed at least once. Following the keyword UNTIL is a boolean
expression. If the expression evaluates to FALSE then execution
returns to the first statement following the REPEAT keyword. If the·
expression evaluates to TRUE then execution continues with the
statement following the boolean expression.

Example REPEAT statement:

REPEAT
i ·-.- i+l;
j ·-.- j-1;
k[j] := (i + j) MOD 100;
l[i] ·-.- Ci + j) MOD 200;

UNTIL i=j

D. Conditional Statements

Conditional statements are used when the execution of a statement
must be controlled by some predetermined condition or when one
statement out of a group of statements is to be selected for
execution. There are two conditional statements.

D.1 The IF Statement

The IF statement uses a boolean expression to control the execution
of statements.

Syntax of the IF statement:

I
V

-->IF--> bool expr -->THEN--> statement---> ELSE--> statement--->

- 58 -

)

Statements Chapter 8

In its simplest form, the IF statement involves the evaluation of a
boolean expression to determine whether or not to execute an
associated statement which follows the keyword THEN. If the
expression is TRUE, then the statement is executed, otherwise it is
not. The IF statement can also contain an ELSE clause. In this form,
if the boolean expression is TRUE, then the statement following the
keyword THEN is executed, otherwise the statement following the
keyword ELSE is executed.

Example IF statements:

IF finished THEN WRITELN(' operation complete');

IF number< 10 THEN range:= 1 ELSE range :=2;

IF alpha>= '0' AND alpha<= '9' THEN digit(alpha)
ELSE

IF alpha>= 'A' AND alpha<= 'Z' THEN letter(alpha)
ELSE

special(alpha);

IF contextlist = NIL THEN
BEGIN
NEW(context);
context@.link := NIL;
contextlist := context;
END

ELSE
BEGIN
temp:= context;
NEW(context);
temp@.link := context;
context@.link := NIL;
END;

The statements following the keywords THEN or ELSE can themselves be
IF statements. In some forms, an ambiguity can exist in determining
which ELSE clause goes with which IF. For example, consider the
following case where bl and b2 represent boolean expressions and s1
and s2 represent statements.

IF bl THEN IF b2 THEN sl ELSE s2

- 59 -

Statements Chapter 8

The ELSE could go with the first IF or the second IF. The rule used
for solving the ambiguity is to associate an ELSE clause with the
nearest IF. The above statement would then be equivalent to:

IF bl THEN
BEGIN
IF b2 THEN sl ELSE s2
END

Caution: Semicolons must not appear in the middle of a
statement. The most common error for beginning
programmers is to put a semicolon in an IF
statement which has an ELSE clause. While semicolons
are necessary for separation of the individual
statements within a compound statement, they must
not separate an.ELSE from its corresponding IF.

D.2 The CASE Statement

The CASE statement uses an ordinal expression to select one statement
out of a group of statements for execution. The group of statements
represent alternatives. When a CASE statement is executed, one of the
alternatives is selected and executed and then control passes to the
statement following the CASE statement.

Syntax of the CASE statement:

-->CASE--> ord expr -->OF-----------------

'
----------------; <----------------

------, <---

v t I V
------>constant--->: -->statement---->---

1

I
V

------>OTHERWISE--> statement---> END-->

- 60 -

(

Statements Chapter 8

The alternative statements of a CASE statement are preceded by
constants. The ordinal expression is evaluated and compared to the
constants preceding the alternative statements. If a match is found,
the statement which has the preceding constant that matches the
evaluated expression is executed. There are two actions which can
take place in the event that no match is found. By using the
OTHERWISE clause, you may specify a statement to be executed when no
match is found. If the OTHERWISE clause is omitted and no match is
found, then execution continues with the statement which follows the
CASE statement.

Example CASE statements:

CASE nl+n2 OF
10: X := sin(x);
11: X ·-.- COS (X) i
12: X := ln (x);

END;

CASE day OF
monday . snack ·-. .-
tuesday snack ·-.-
wednesday . snack := .
thursday . snack ·-. .-
friday . snack := .
saturday,
sunday . BEGIN .

weekend
snack
END;

END;

E. The WITH Statement

apple;
orange;
grapes;
pear;
candy;

·-.- TRUE;
·-.- nothing;

CASE ch OF
'a','b','c':
'd','e','f':
OTHERWISE

END;

token:= O;
token:= l;
token:= 2;

The WITH statement is used in conjunction with variables of type
RECORD. It makes it possible to use a shorter notation when
referencing fields of record variables.

Syntax of the WITH statement:

------, <----

❖ I
-->WITH----> variable-----> DO--> statement-->

- 61 -

Statements Chapter 8

The variable list specifies the record variables whose fields are to
be referenced simply by specifiying the field name itself. When
fields of a record are nested Cie. a record is defined as a field of
another record), the record variable and the fields, down to the level
of the field which is to be referenced in short notation, may be
specified in the variable list. Then the nested field can be
referenced in the statement simply by specifying its field name.
There is a conflict inside the WITH statement when an identifier
corresponds to both a variable name and a field name of one of the
specified records. For example, you could have a record variable
named "weekday" with a field named "monday" and also a simple variable
named "monday". Then the following WITH statement might be used.

WITH weekday DO monday := 1

In such a case, the field name takes precedence over the variable
name and the field of the record is referenced. If nested WITH
statements are used and a field name inside occurs in more than one of
the specified records, then the closest WITH takes precedence.

Example WITH statements:

Assume the declarations:

customer: RECORD
name,
address,
city
date

:PACKED ARRAY[l •• 20] OF CHAR;
:RECORD
month,
day,
year :INTEGER;

END;

WITH customer DO
BEGIN

END;

·­.-name
address:=

'JACK SLATE

city
END;

·­.-
'1216 MELODY LANE
'TULSA, OKLAHOMA

WITH customer.date DO
BEGIN
month
day
year
END;

:= 10;
:= 23;
:= 1981;

- 62 -

' . ,
' . ,
I • ,

Statements Chapter 8

F. The GOTO Statement

The GOTO statement is used to cause an unconditional branch to a
labeled statement.

Syntax of the GOTO statement:

-->GOTO--> label-->

The label must be declared in the LABEL declaration part of the same
block which contains the GOTO referencing it. The GOTO statement
cannot specify a branch to a label outside the block in which it
resides. Care must be taken when using the GOTO statement. For
example, you should not branch inside a FOR loop from a statement
outside the loop. This could cause some very unpredictable results.

Example GOTO statement:

FOR i := 1 TO 1000 DO
IF a{i) <> b{i) THEN GOTO 10
ELSE a{i) := b{i);

10: a{i) := '#0D';

G. The Procedure Statement

The procedure statement causes the activation of a procedure.
Control passes to the named procedure and then returns to the
statement following the procedure statement when the activated
procedure terminates. If a procedure has a parameter list, a
procedure statement which activates it must specify an argument for
each parameter of the parameter list. The arguments must match the
order and type of the parameters specified in the parameter list of
the procedure. An argument is specified as an expression. If a
parameter of a procedure is a pass by reference parameter {denoted by
VAR), the corresponding argument of a procedure statement must be a
single variable name. The variable may be a simple variable or a
component of a structured variable.

- 63 -

Statements Chapter 8

Syntax of a procedure statement:

I (--

t I
--> procedure id---> (---> expr --->

V
) --->

Example procedure statement (call):

(See the procedure declaration in section B.7 of chapter 2)

getvalue(n+j,8,hexstring,value)

report

writeout(x,y,3.7+9.6/z)

- 64 -

Procedures and Functions Chapter 9

PROCEDURES AND FUNCTIONS

(See chapter 2 for a description of the syntax of procedure
and function declarations. A discussion of parameter passing
is included with the discussion of the procedure heading.)

Procedures and functions are the tools used to modularize a program.
This is the process of breaking a program up into smaller and more
manageable pieces. They make a program much more readable and make
possible later modifications much easier to handle.

Procedures and functions can be compiled separately and then linked
to programs that use them. This allows for the development of
libraries of commonly used procedures and functions. Then all the
programs that use them can link them in rather than having to include
them in the program itself.

The variables declared in a procedure or function do not occupy
storage space until the procedure or function is activated. When
activated, storage space is allocated for the variables and when the
procedure or function terminates, the allocated space is released.
Therefore, the amount of storage (or stack) space required by a
program at any point in time is a function of the number of blocks
which are activated at that time.

A procedure is activated (or called) by a procedure statement. When
a procedure is called, control is passed from the point of the call to
the procedure. The statements in the procedure then are executed.
When the block END of the procedure is reached or when a call to the
ESCAPE procedure is made, control passes back to the statement·
following that which activated the procedure.

A function is activated by an expression. When an expression which
contains a reference to a function is evaluated, the function
reference causes control to pass to the named function. The
statements in the function then are executed. Unlike procedures,
functions have a declared type. At some point inside the·statement
body of a function, the function name should be assigned a value. The
value must be the same type as the type to which the function is
declared. When the block END of the function is reached or when a
call to the ESCAPE procedure is made, control passes back to the
evaluation of the expression which activated the function and the
function reference is replaced by the value assigned to the function.

- 65 -

Procedures and Functions Chapter 9

A. Scope Rules

A procedure or function declaration forms a new block which is a
subblock of the block in which the declaration appears. The new block
formed is "nested" within the block which declares it. This process
of nesting which occurs every time a procedure or function is declared
produces a program structure such as the one shown on the first page
of chapter 2. Any block which is enclosed by another block is said to
be nested within that block. The level numbers on the diagram
indicate how deep the nesting goes beyond the program block which is
arbitrarily assigned level 1. The existence of procedures and
functions makes it necessary to talk about scope rules. Scope rules
describe the accessibility of identifiers from any particular place in
a program. The two terms local and global are helpful in discussing
scope rules.

An identifier is considered to be local to a block if the identifier
is declared within the same block. If there are no blocks nested
within the declaring block, then a local identifier can only be
referenced by the block which declares it. Enclosing blocks cannot
access a local identifier.

An identifier is considered to be global to blocks which are nested
within the block in which the identifier is declared. If an
identifier is global to a particular block, then that block can
reference the identifier provided that it has not declared an
identifier of the same name. If a block declares an identifier with
the same name as a global identifier, then the global identifier is no
longer accessible from that block. Also, any further nested blocks
will not have access to the original global identifier.

Identifiers declared in the program block are accessible from any
place in a program because all other blocks are nested within the
program block. Therefore, identifiers declared in the program block
are global to all procedures and functions of the program.
Identifiers declared in a procedure or function are local to that
procedure or function. The only places in the program which can
access these identifiers are the procedure or function itself and the
procedures or functions, if any, which are nested within. The nested
procedures or functions can access only the global identifiers which
they do not declare themselves.

- 66 -

Procedures and Functions Chapter 9

A procedure or function declaration consists of a heading followed by
a block. It is important to note that the procedure or function name
of a heading is local to the block which declares it. The parameters
of the heading are local to the procedure or function itself. This
means for example that a procedure statement in the program block can
reference any procedure declared in the program block. However, a
procedure statement in the program block can not reference any
procedure declared within one of these procedures.

As an example of how scoping effects the accessibility of
identifiers, consider the sample diagram on the first page of chapter
2. The following table shows for each block of the diagram, the
procedures and functions which are callable from that block, and the
constants, types, variables, etc. which can be referenced by the
block.

Block accessible procedures
and functions

A B, D, F

B B, C, D, F

C B, C, D, F

D B, D, E, F

E B, D, E, F

F B, D, F

- 67 -

accessible constants,
types, variables, etc.

A

A, B

A, B, C

A, D

A, D, E

A, F

Procedures and Functions Chapter 9

B. FORWARD

The rule that an identifier must be declared before it is referenced
means that a procedure or function must be declared before it is
referenced by a procedure statement or by an expression with a
function reference. Some calling sequences that occur among a group
of procedures or functions make it impossible to obey this rule. For
example, if two procedures call each other, then you can not declare
one without referencing the other. The keyword FORWARD provides the
mechanism for getting around this problem. Using the keyword FORWARD
with just the heading for a procedure or function declaration signals
the compiler that the procedure or function block will be declared at
some later point in the program. If the procedure or function has
parameters, the parameters are declared as well. Then the procedure
or function which has been forward declared may be referenced.

Syntax of forward declaring a procedure or function:

--> function heading ---

1 t
----> procedure heading----> FORWARD-->;-->

(See chapter 2 for the syntax of procedure and function headings)

The actual declaration of a forward declared procedure or function
can appear at some later place in the program. The place that it
appears must be at the same level and scope as its forward
declaration. The actual declaration consists of the heading with no
parameters, followed by the block. Since the parameters were declared
in the forward declaration, they must not be declared again in the
actual declaration.

If a forward declared procedure or function does not have its
actual declaration present, then it is treated as an external
procedure or function.

Example use of forward:

PROCEDURE abc(pl, p2: INTEGER); FORWARD;

PROCEDURE xyz;
VAR pl, p2: INTEGER;
BEGIN
abc(pl,p2);
END;

PROCEDURE abc;
BEGIN
.

END;

- 68 -

Procedures and Functions Chapter 9

C. EXTERNAL

An external procedure or function can be declared in a program by
specifying its heading followed by the keyword EXTERNAL.

Syntax of externally declared procedures or functions:

note: EXTERN also accepted
--> function heading ---

1 !
-----> procedure heading-----> EXTERNAL-->;-->

Note:
for brevity the word "routine" will be used in place of
"procedure or function" in the following discussion.

The linking loader may be used to link separately compiled routines
to a program. By declaring a routine to be external, the actual ·
declaration does not have to appear in the program. This is very
useful when working with large programs. A large program may be
broken up into many routines which are declared as external. The
external routines can then be compiled individually. The linking
loader can then be used to link the compiled program to its
individually compiled routines. One advantage to this is that any
changes which are made to a particular routine will cause only that
routine to have to be recompiled. The linking process is then
repeated after the changed routine has been recompiled. Another
advantage is that slightly larger programs can be created by compiling
them in pieces and then linking the pieces together.

Perhaps one of most frequent use of external routines is to create a
file or library of commonly used routines. Then all the programs
which use the routines can link to them rather than having to declare
them in each program.

A compiler option must be used to compile a routine by itself. The
reason is that a routine by itself is not a legal Pascal program.
Therefore, a legal program must be constructed around the routine.
This would include a program heading, the environment of the routine,
the procedure or function declaration, and a statement body. The
environment consists of any constants or types which are in the scope
of and are used by the external routine. If global constants or types
are needed by the routine, they should be given the same names as
those used in the programs that use the routine. The scope refers to
the identifiers in a program which are accessible to the externally
declared routine.

- 69 -

Procedures and Functions Chapter 9

Variables can also be included in the environment but this is not
recommended. If an external routine needs to access a global
variable, the variable should be passed as a parameter to the routine.
Otherwise, extreme care must be taken to assure that the environment
around the external routine matches the environment of the programs
which use the routine. The statement body contains the compiler
option which is called "nullbody". The nullbody option tells the
compiler not to generate any code for the program. Only code for the
declared routine is generated.

The syntax for using the nullbody compiler option is shown in the
appendix along with all the other compiler options. An example using
global variables in an external procedure is also given.

Example use of external procedure:

PROGRAM sample;
CONST •••••
TYPE •••••
VAR xmin,xmax,ymin,ymax: REAL;

.
PROCEDURE axes(xmin,xmax,ymin,ymax: REAL); EXTERNAL;
BEGIN

axes(xmin,xmax,ymin,ymax);

END. (*sample*)

Separate compile of procedure axes:

PROGRAM axesroutine;
(*global environment, if any, goes here*)
PROCEDURE axes(xmin,xmax,ymin,ymax: REAL);

TYPE •..•
VAR ••.•
BEGIN

.
END; (*procedure axes*)

BEGIN
(*$NULLBODY*)

END.

- 70 -

)

Procedures and Functions Chapter 9

D. Recursion

Pascal is a language which supports recursion. Recursion refers
to having more than one activation of a particular procedure or
function at the same time. There are two forms of recursion.
Direct recursion refers to a procedure or function that calls
itself. Indirect recursion refers to a procedure or function
that makes a call which eventually results in the procedure or
function being called again. An example of this is two procedures
that call each other. When writing recursive procedures, some
conditional statement must exist in the procedure to halt
the recursion at some point. Otherwise, there would be an endless
loop that would terminate only after the stack was exhausted
crashing the program. Recall that each activation of the
procedure results in space being allocated for its variables.·

Example use of recursion:

PROCEDURE XYZ;
(*DECLARATION HERE*)

BEGIN
XYZ; (*PROCEDURE CALLS ITSELF*)

END;

- 71 -

Procedures and Functions Chapter 9

E. Predeclared Procedures and Functions

The predeclared procedures and functions are accessible from any
place in a program. They are declared in an imaginary block which
surrounds the program block. The names of predeclared procedures or
functions may be used as identifiers in programs. This means that the
name of a predeclared procedure or function may be used in a
declaration. If so, then the predeclared procedure or function whose
name is used in a declaration is no longer accessible to the program.
Its name is associated with the new declaration.

File Associated Procedures

RESET(f)

REWRITE(f)

PAGE(f)

CLOSE(f)

MESSAGE(s)

READ, READLN
WRITE, WRITELN

Positions the file pointer of the
specified file to the beginning for the
purpose of reading. If the file is empty,
then the function EOF becomes true, else
it is false.

Replaces the specified file with
an empty file. The file pointer
is positioned to the beginning of
the file.

Outputs a forrnfeed to the specified file.
Formfeeds cause skipping to the top of the
next page when the file is printed.

Closes the specified file. This procedure
may be used to explicitly close a file at
any time.

Outputs the specified string to the terminal.
sis char or array of char

Read data from a device
Write data to a device
(See chapter 10 for details)

- 72 -

)

)

Procedures and Functions Chapter 9

Arithmetic Functions
---------------~--~-

Operation Type of X Type of Result
------------ --------- _,......,. __________ ,_,,

ABS(x) absolute value integer, real same type as x

SQR(x) square integer, real same type as x

SIN(x) sine integer, real real

COS(x) cosine integer, real real

ARCTAN(x) arctangent integer, real real

EXP(x) natural (base e)
exponential integer, real real

LN(x) natural logarithm integer, real real

SQRT(x) square root integer, real real

Boolean Functions

ODD(x)

EOLN(x)

EOF(x)

Operation: Returns true if xis odd, else false
Type of x: integer
Type of result: boolean

Operation: Returns true if the end of a line
in the file has been reached

Type of x: text
Type of result: boolean

Operation: Returns true if the end of the file
has been reached.

Type of x: file
Type of result: boolean

- 73 -

Procedures and Functions Chapter 9

Transfer functions

TRUNC(x)

ROUND(x)

ORD(x)

CHR(x)

LOCATION(x)

SIZE(x)

HB(x)

LB(x)

Operation: Truncates a real value to its
integer part

Type of x: real
Type of result: integer

Operation: Rounds a real value to the
nearest integer

Type of x: real
Type of result: integer

Operation: Returns the ordinal number of x.
Type of x: any ordinal type
Type of result: integer

Operation: Returns the character whose ordinal
number is x

Type of x: integer
Type of result: char

Operation: Returns the address of variable x
Type of x: any type (may also be a procedure name)
Type of result: integer

Operation: Returns the size of type x in bytes
Type of x: any type identifier
Type of result: integer

Operation: Returns the high byte of x
Type of x: integer
Type of result: integer

Operation: Returns the low byte of x
Type of x: integer
Type of result: integer

Data transfer procedures

PACK(a,i,z) Operation: Copy the unpacked array a into the
packed array z. If the dimension of a
is m •• n and the dimension of z is u .• v
and n-m > v-u then the operation is
equivalent to:
for j:= u to v do z[j] := a[j-u+il

UNPACK(z,a,i) Unpacks the above array.

- 74 -

(

Procedures and Functions Chapter 9

Dynamic allocation procedures

NEW(p) Allocates a new variable v and assigns the
pointer reference of v to the pointer variable
p. Tag field values may appear as parameters
to NEW but are non-functional.

DISPOSE(p) Releases the storage occupied by the variable
pointed to by p.

Other functions

SUCC(x)

PRED(x)

Operation: Returns the successor of x which is
next higher value in the enumeration
of which xis a member

Type of x: any ordinal type
Type of result: same type as x

Operation: Returns the predecessor of x which is
the next lower value in the enumeration
of which xis a member

Type of x: any ordinal type
Type of result: same type as x

Other procedures

ESCAPE Causes termination of a block just as if the
block end had been reached. If the block is
a procedure or function, then control returns to
the calling block. If the block is the program
block, then program execution is terminated.

note: IF files are declared locally within a procedure,
then the files must be closed using the procedure
CLOSE before calling ESCAPE. Normal termination
of a block results in files automatically being
closed.

- 75 -

Input and Ouput Chapter 10

INPUT AND OUTPUT

Input and output is the communication of a program to the external
environment. A program communicates to the external environment
through the use of logical files. Logical files are the variables in
a program which are declared as type FILE or TEXT. The logical files
are then associated with physical files. Physical files are the
actual devices of the computer system. A physical file could be a
disk file, a terminal, a printer, or some other device. The method
of associating logical files to physical files is discussed in the
System Implementation Manual.

Predeclared procedures and functions are provided for handling
input and output. These procedures and functions have a
characteristic unlike other procedures and functions. The number of
parameters passed to them can vary. They may be called with no
parameters or with several parameters. Since each input and output
routine performs an operation on a file, it must know which file to
operate on. If a routine is passed the logical file name, then it
operates on the specified file, otherwise it operates on a default
logical file. The two predeclared variables INPUT and OUTPUT are the
default logical files. They are both declared as type TEXT. The one
used as the default depends on the routine called. The input routines
default to INPUT and the output routines default to OUTPUT.

input

RESET
READ
READLN

I/0 Routines

Procedures

output
----~----

REWRITE
WRITE
WRITELN
PAGE
MESSAGE

Functions

general EOF
~------ EOLN

CLOSE

- 76 -

)

)

(

Input and Ouput Chapter 10

A file has associated with it a file pointer. The file pointer is
used to point to an individual component of a file. There are two
predeclared boolean functions which may be used to check the status of
a files pointer. Both functions may or may not take a logical file
name as a parameter. If no file parameter is passed, the default is
INPUT. The function EOF(file) returns the value TRUE if the pointer
is at the end of the file. Otherwise, the value returned is FALSE.
The function EOLN(file) can only be used with files of type TEXT. It
returns the value TRUE when the files pointer is at the end of a line.
Otherwise, the value returned is FALSE.

Syntax of function EOF or EOLN: (default: file= INPUT)

--> EOLN

I V I t
-----> EOF----------> (-->file-->) --->

Examples of using EOF and EOLN:

WHILE NOT EOF{datain) DO
BEGIN
WHILE NOT EOLN(datain) DO

BEGIN
READ(ch);

END;

END;

A. RESET

IF EOF THEN quit
ELSE

READ(number);

The RESET procedure opens a file so that it can be read. No
input can be received from a file without this operation first being
performed.

Syntax of RESET: (default: file= INPUT)

I
V

-->RESET---> (-->file-->)--->

- 77 -

Input and Ouput Chapter 10

The procedure positions the file pointer to the beginning of the
file. If the file is empty, then the function EOF(file) becomes TRUE.
If the file is not empty, then the function EOF(file) becomes FALSE.

The statement RESET(INPUT) is implicitly executed at the beginning of
a program unless the NO INOUT compiler option is used. Therefore,
it is not necessary for a program to explicitly open the default logical
file INPUT.

Example use of RESET:

PROGRAM readdata;
VAR datain: TEXT;
BEGIN

RESET(datain); (*open file datain for reading*)
.

END.

Input and output to files is buffered. This is to prevent having to
access a physical device every time an operation is performed. Each
file used by a program has an associated buffer. Unlike standard
Pascal, the input buffer of a file is not filled when a reset is
performed. The input buffer becomes filled the first time a READ,
READLN, EOLN, or EOF is performed on the file. This prevents the
normal problems associated with reading from a terminal. Programs can
have their logical files remapped from a disk file to a terminal
without modification to the program itself.

(See the System Implementation Manual for a description
of how to associate logical files to physical files)

B. REWRITE

The REWRITE procedure opens a file so that it can be written. No
output can be sent to a file without this operation first being
performed.

Syntax of REWRITE: (default: file= OUTPUT)

I t
-->REWRITE---> (-->file-->)--->

- 78 -

)

Input and Ouput Chapter 10

The procedure positions the file pointer to the beginning of the
file. The file becomes empty when this happens. This means that any
data in the file is lost.

The statement REWRITE(OUTPUT) is implicitily executed at the
beginning of a program unless the NO INOUT compiler option is used.
Therefore, it is not necessary for a program to explicitly open the
default logical file OUTPUT.

C. READ

The READ procedure assigns the value of components of a file to
variables.

Syntax of READ: (default: file= INPUT)

--------------- -----, <---

f V i
-->READ--> (--->file-->,-------> variable--->)-->

The number of variables passed to the procedure determines the number
of components read from the file. The components refer to the way the
file is logically separated into individual data elements. Each
component is of some data type which defines its size. Reading begins
with the component pointed to by the file pointer. The first variable
specified is assigned the value of this component and then the file
pointer is advanced to the next component. This process is continued
until all the variables specified are assigned values. The type of
each variable must match the type of the file component being assigned
to it.

Text files

If the file is of type TEXT, the variables can be type REAL, INTEGER,
subrange of integer, CHAR, or strings. Strings are declared as single
dimensioned packed arrays of the type CHAR. These types can be
intermixed as components of text files. Then they may be read by
specifiying variables which match in type and order, the components of
the file.

Note: The following characters have special meaning in a text file and
may not be read as single characters. Use FILE OF CHAR to avoid
this special processing.

HT
LF
CR
SUB

-->
-->
-->
-->

#09
#0A
#OD
#lA

- 79 -

Input and Ouput Chapter 10

If the variable is of type CHAR, then a single character is read from
the file. If the variable is an array of CHAR, then the dimension of
the array determines the number of characters read from the file. If
an end of line or file mark is encountered before the array is full,
then the characters read up to that point are left justified in the
array and the remaining elements are filled with blanks. Integer and
real numbers are represented in files as strings of characters.
Individual numbers in a file are separated by blanks or by an end of
line mark. When a number is read, the character string representing
the number is automatically converted to its real or integer value
before being assigned to the variable. With text files, consecutive
read operations automatically skip end of line marks when reading
integer, real, or boolean variables. When reading character or string
variables, the end of line mark is not skipped. In this case, the
procedure READLN must be executed to cause the file pointer to advance
to the next line.

Example use with text files:

Consider the following file of data:

SAM JONES
MARY SMITH

25
23

and the declarations:

183.5
105.4

369
356

VAR name : PACKED ARRAY[l •• 10] OF CHAR;
number, total : INTEGER;
score : REAL;
students : TEXT;

If the file pointer of "students" points to the
beginning of a line (it does immediately after a RESET)
then:

READ(students,name,number,score,total)

would assign a string, integer, real, and integer value to
the 4 specified variables. The file pointer would then point
to the character immediately following the last value read.

- 80 -

)

)

(

Input and Ouput Chapter 10

Non-text files

If the file is not of type TEXT, then all components of the file are
of the same type. The components of a file may be declared to be of
any type except the type FILE or structured types containing a
component of type FILE. This means for example, that you could
declare a file of records. Then an entire record can be read into a
variable of the same record type. This however, requires that the
file of records has previously been created through the use of the
procedure WRITE. The reason for this is that all files which are not
of type TEXT are read and written in binary form.

Example use with non-text files:

assume the following declarations:

TYPE food= RECORD
fruit : (orange, grape, apple);
vegetable: (corn, okra, beans)1
cost : INTEGERJ
END;

VAR groceries: FILE OF food;
item : food;

then:
READ(groceries, item)

would assign one record from the file to the variable "item".

Care should be taken not to read past the end of a file. The
function EOF is provided for preventing this from occuring. The
program will not abort if you try to read past the end of file, but
the value assigned to the variable will be some unknown value.

D. WRITE

The procedure WRITE appends values to a file. The number of values
passed to the procedure determines the number of values output to the
file. If a file is declared as type TEXT, then output values can be
specified as strings or expressions. If a file is declared as a type
other than type TEXT, then the output values are restricted to
variables of the same type only.

- 81 -

Input and Ouput Chapter 10

Syntax of WRITE:

For non-text files:
I(----

I
V 1

-->WRITE--> (-->file-->,---> variable--->)-->

For text files: (default: file= OUTPUT)

--------------- --------, <--------
' I I V V

-->WRITE--> (--->file-->,-----> write parameter--->)-->

Syntax of write parameter:

I
--> real expr -->:-->integer expr ------>:-->integer expr·--

1
--> integer expr

--> boolean expr

V ---l 1----------------------1
V

----> string ------->:-->integer expr ------------------------>

Syntax of string: (string variable= packed array of char)

string variable-------

------,<----
! I V

--->'--->character--->•--->

- 82 -

Input and Ouput Chapter 10

Text files

If the file is of type TEXT, then the values output to the file may
be specified as strings or as boolean, integer, or real expressions.
If a string is specified, then the characters of the string are output
to the file. If a boolean expression is specified, then either the
characters 'TRUE' or 'FALSE' are output to the file depending on the
value of the expression. If an integer or real expression is
specified, then the value of the expression is converted to a
character string before being output to the file. An integer
expression may be output in hexadecimal or decimal base
representation.

The number of characters to output for a value can be specified by an
integer expression which follows the value, separated by":". If the
number of characters is not specified for a particular value, then a
default number of characters will be output.

---For a string---
If the number is less than the length of the string, then all the

characters of the string are output. If the number is greater than
the length of the string, then blanks will be appended to the string.
The default number is the length of the string.

Example: WRITE(' literal string' : 20)

---For a boolean expression---
The same rule applies for the strings 'FALSE' and 'TRUE'.

Example: WRITE(a AND b: 10)

---For an integer expression---
If the number is less than the number of digits in the integer, then

all the digits are output. If the number is greater than the number
of digits, then the excess characters are output as blanks before the
integer is output. The default number of digits for integers is 8.
An integer value may be written in hexadecimal base format by
specifying: width HEX

Example: WRITE(outfile, n+S :i, j :4 HEX)

---For a real expression---
Two numbers may be specified for real values. The first number

specifies the total field width. The second specifies the number
of digits after the decimal point. If both are specified, the
the number will be written in fixed format. Otherwise, the number
will be written in exponential format. The default field width for
single precision is 12. The double precision default is 20.
The maximum field width is 32.

Example: WRITE(2.S*random :5, random/x:9:6)

- 83 -

Input and Ouput Chapter 10

Non-text files

If the file is not of type TEXT, then output values must be
variables. Output directed to non-text files is in binary form.
means that values are output in the same form as they are stored.
example, an integer is not converted to a character string before
is output.

Example use with non-text files:

WRITE(groceries,item)

E. READLN

This procedure can be used only with files of type TEXT. (See
section C.l of chapter 4 for a description of text files.)

This
For

it

The READLN procedure is similar to the READ procedure. The
difference is that at the end of the read operation, the file pointer
is advanced to the beginning of the next line.

Syntax of READLN: (default: file= INPUT)

-----I(----
I V

--> READLN ---> (--->file
V t I

--->,----->variable -----> --->

I
A

--~-------------~-------
The READLN procedure may be called without passing any variables to

be read. When no variables are specified, then the procedure just
advances the line pointer to the beginning of the next line.

The statement: READLN(varl,var2,var3)
is equivalent to: BEGIN READ(varl,var2,var3); READLN END

- 84 -

J

)

Input and Ouput Chapter 10

The function EOLN can be used to determine whether or not a files
pointer is at the end of a line.

Example use of READLN:

i := 0;
WHILE NOT EOF DO

BEGIN
i := i+l;
READLN(a[i]) (*reads one value from each line*)

END;

WHILE NOT EOF (infile) DO
BEGIN
WHILE NOT EOLN(infile) DO

BEGIN
READ(infile,ch);

END;
READLN(infile); (*advances file pointer to next line*)
END;

F. WRITELN

This procedure can only be used with files of type TEXT. (See
section C.l of chapter 4 for a description of text files).

The WRITELN procedure is similar to the WRITE procedure. The
difference is that at the end of the write operation, an end of line
mark is appended to the file.

Syntax of WRITELN: (default: file= OUTPUT)

---------, <-------
t t I V

--> WRITELN ---> (--->file --->,----->write parameter--->)--->

I
(See WRITE for syntax of write parameter)

- 85 -

Input and Ouput Chapter 10

The WRITELN procedure may be called without passing any values to
written. When no values are specified, then the procedure just
appends an end of line mark to the file.

The statement: WRITELN(varl,var2,var3)
is equivalent to: BEGIN WRITE(varl,var2,var3); WRITELN END

Example use of WRITELN:

(*writes 2 values on each line*)
FOR k := 1 TO 100 00 WRITELN(a[k],b[k]);

FOR j := 1 TO maximum DO
BEGIN
i := O;
REPEAT

i := i+l;
WRITE(number[j]);

UNTIL (i=S) OR (number[j]>l00);
WRITELN; (*advance file pointer to next line*)
END;

G. CLOSE

The use of the CLOSE procedure will assure that file data will not
be lost if the program abnormally terminates and does not properly
close the file. The CLOSE procedure must be used with files which are
components of structured variables. (see the appendix)

Syntax of CLOSE:

-->CLOSE--> (-->file-->) -->

- 86 -

)

Input and Ouput Chapter 10

H. PAGE

The PAGE procedure appends a formfeed to a file. Formfeeds cause
printers to skip to the top of the next page. This procedure provides
a way of controlling the number of lines printed on a page.

This procedure may only be used with files of type TEXT.

Syntax of PAGE: (default: file= OUTPUT)

I
V

-->PAGE---> (-->file-->)--->

I. MESSAGE

The procedure MESSAGE may be used to output strings to the terminal.
It takes one parameter which is either a string constant or variable.
A string constant is a sequence of characters enclosed in single
quotes. A string variable is a variable declared as a packed array of
characters.

Syntax of MESSAGE:

-->MESSAGE--> (-->string-->) -->

Programs which require only string output to the terminal can use
this procedure rather than the WRITE procedure.

Example use of MESSAGE:

MESSAGE(' time to quit');

MESSAGE(string);

- 87 -

APPENDIX

A. COMPILER OPTIONS

Compiler options are provided to change the behavior of the Pascal
compiler. These options allow features to be enabled or disabled and
can alter the code generated at compile time.

Compiler options are specified in comments. A comment that
contains a dollar sign as the first character specifies an option.
All compiler options have two states, on and off. An option is turned
on by placing its name after the dollar sign. If the option name is
preceded by the word "NO", then the option is turned off. Except
where noted, the options may appear any place in a program.

DOUBLE

This option specifies that all real variables within the program
should be double precision. This option must precede the program
statement. If it occurs anywhere else in the program, it will be
ignored. If the option is off (the default), then real variables are
single precision.

Example:

(*$DOUBLE*)
PROGRAM DBL~
VAR

R: REAL;
BEGIN
END.

In this program, the variable "R" will be declared as double
precision.

- 88 -

(

FORDECL

This option is used to change the behavior of loop counters in FOR
statements. If the option is turned on(default is off), then all FOR
loop counters are treated as temporary variables. They do not need to
be declared, and even if a declaration is present, a new variable is
used rather than the declared variable. These FOR loop counters are
defined only within the loop and disappear when the loop is exited.

Example:

PROGRAM FORLOOP;
(*$FORDECL*)
VAR

A,I: INTEGER;
BEGIN

A:= O;
I := 0;
FOR I := 0 TO 4 DO A:= A+ I;
WRITELN(OUTPUT,I,A);

END.

In the above program, the I used as a FOR loop counter is a different
variable from the I declared in the VAR section. When the write
statement is executed, the values 0 and 10 will be printed.

INOUT

This option enables the predeclared files: INPUT and OUTPUT(default
is on). If this option is turned off before the PROGRAM statement,
then the files input and output will not be declared. This option
prevents the reset of INPUT and the rewrite of OUTPUT and can be used
to avoid the prompts "INPUT=" and "OUTPUT=" when a program is run.

Example:

(*$NO INOUT*)
PROGRAM NOPROMPTS;
BEGIN

MESSAGE('! WAS NOT PROMPTED FOR INPUT AND OUTPUT')
END.

- 89 -

IF

The if option provides conditional compilation. The word IF is
followed by the name of a boolean constant. If the constant has the
value "TRUE", then compilation continues as if the option had not been
present. If the constant has the value "FALSE" then compilation stops J

at that point, and all text is treated as comments until a (*$NO IF*)
is encountered. Note that IF options do not nest. That is, an IF
option should not occur within the scope of another if option. The if
option can be used to configure a program for different environment~
with minimum changes to the source. It is also useful for removing
debugging statements once the program is working properly.

Example:

PROGRAM Test;
CONST

debug= false;

FUNCTION FACTORIAL(! : INTEGER) REAL;
BEGIN

IF I= 0 THEN FACTORIAL:= 1
ELSE BEGIN

(*$IF DEBUG*)
WRITELN(OUTPUT,'CALLING FACTORIAL(',I-1,')');
(*$NO IF*)
FACTORIAL:= I* FACTORIAL(I-1);
END;

END; (*FACTORIAL*)

BEGIN
WRITELN(OUTPUT,'FACTORIAL(20)=',FACTORIAL(20));

END.

In the above program, the write statement within the recursive
function FACTORIAL could be turned on during debugging by setting
debug to TRUE. Once the program is ~unning, it can be recompiled with
debug set to FALSE. The write statement will be effectively removed.
In fact, since no code is generated for it, the resulting object
program will be shorter. This has the same effect as removing the
statement with an editor or placing open and close comments arround
it. The advantage is that many statements can be disabled or enabled
with a single change to the source program. Also, it is simple to
reenable debugging statements should it become necessary in the
future.

- 90 -

NULLBODY

The nullbody option is used to disable code generation for a
procedure, function or program. The nullbody option should occur
after the BEGIN that starts the block and before any executable
statements. Nullbody will prevent code from being generated and can
be used when procedures are being compiled separately. Since every
program must have a program statement and a main program body, it is
necessary to use nullbody to disable code generation for the main
program when a subroutine library is being compiled.

For example:

PROGRAM SUBLIBRARY;
TYPE

STRING= PACKED ARRAY[l •• 80] OF CHAR;

PROCEDURE CONCATENATE(VAR Sl, S2, RESULT: STRING);
BEGIN

(* BODY OF CONCATENATE*)
END;

PROCEDURE MID$(VAR S: STRING; FIRST, LAST: INTEGER;
VAR RESULT: STRING);

BEGIN
(* BODY OF MID$*)

END;

BEGIN
(*$NULLBODY*)

END.

If the above program is compiled, the object file will contain code
only for the two procedures: CONCATENATE and MID$. There will be no
main program. This allows these procedures to be linked to another
program.

- 91 -

INCLUDE

The include option is used to specify within a program,
the name of a file which contains Pascal statements which you
want included in ·the compilation process. When the compiler
encounters an include option, it opens the specified file and
compiles all the Pascal source in the file before continuing
compilation of the current file. The include option allows you
to include commonly used routines or declarations in a program
without actually having the code present. You simply tell the
compiler the name of the file containing the Pascal statements
and it will include those statements as it compiles.

The include options may be nested. That is, you may include
a file which also contains an include compiler option. There is
no limit to the number of nested includes. However, the
the compiler must maintain a file descriptor for each file that
is open at any given time. The file descriptors are allocated
memory from the heap. If too many files are open at a time, the
compiler may run out of heap during the compile process.

Example use of the INCLUDE option:

PROGRAM sample;
{DECLARE contains the declarations for this program}
(*$INCLUDE 'DECLARE'*) {note the quotes}
BEGIN

{BODY contains the statement body for this program}
(*$INCLUDE 'BODY'*)

END.

- 92 -

)

LIST

The list option allows you to turn the compiler listing
on and off within a program. The default is on. Therefore,
the compiler will by default generate a listing which contains
all the lines of a program. If it is desired to discard some
of the lines of a program from the compiler generated listing,
(*$NO LIST*) may be used to tell the compiler to discard all
subsequent lines of the program from the listing. The compiler
does not stop compiling subsequent lines, it just does not
output them to the listing. Object code is still generated.
If you wish to turn the compiler listing back on, then (*$LIST*)
tells the compiler to start outputting all subsequent lines to
the listing again.

The LIST option may be useful when compiling frequently used
routines which you know will compile correctly. It provides
a method to shorten compiler listings, saving paper when
printing, and making it easier to locate other procedures or
functions by uncluttering lengthy program listings.

Example using the compiler LIST option:

PROGRAM sample;
VAR •••

PROCEDURE useoften;
(*$NO LIST*) {turn off listing for useoften}
VAR ••.
BEGIN

END;
(*$LIST*)
BEGIN

END.

{end of procedure useoften}
{turn listing back on for program}
{beginning of main program}

- 93 -

PAGESIZE

The listing generated by the compiler has printer control
information (formfeed) between each page. The compiler outputs
a formfeed (hex 0C) to the listing every 62 lines. The
formfeed causes most printers to advance the paper to the top
of the next page. The PAGESIZE option allows you to change the
number of lines that the compiler will output to the listing
between formfeeds. The actual number of lines output between
formfeeds is 2 more than the number specified by the PAGESIZE
option. This is to allow for the heading.

Most operating systems control paging when outputting data
to a line printer. The operating system itself maintains a
line counter and outputs a formfeed to the line printer after
so many lines have been sent to the printer. A command is
typically provided to set the number of lines per page or to
turn paging control off entirely. If the operating system is
controlling paging, the listing generated by the compiler may
not be paged properly (ie. the compiler heading may not appear
at the top of each page). The number of lines per page used
by the operating system should be equal to the number of lines
per page used by the compiler, or the operating system paging
must be turned off, if compiler generated listings are to be
printed properly.

Example use of the compiler PAGE option:

(*$PAGESIZE 50*) {set the number of lines/page to 50}
PROGRAM sample;
{the operating system paging should be set to 52
or be turned off entirely}

BEGIN . . .
END.

- 94 -

J

WIDELIST

The compiler now generates line numbers for each line of
a listing. The WIDELIST option is used to specify that you
want the compiler to additionally generate hexadecimal addresses
which show the location of the object code for a particular line
relative to the start of the procedure, function, or program in
which the line appears. This information is useful when used in
conjunction with the linking loader to determine the location
within a program of a fatal error. You may use the S command of
the linking loader to display the starting address of each
routine loaded. Then use the R command to run the program.
When the program terminates with a fatal error, the absolute hex
address of the error is displayed. You may use this address
along with the addresses displayed by the S command to determine
in which routine the error occurred. By subtracting the address
of the error from the starting address of the routine in which
the error occurred, you obtain the relative address of the error
within that routine. This address corresponds to the address
printed on the listing.

Example use of the compiler WIDELIST option:

(*$WIDELIST*) {tell the compiler to print hex addresses}
PROGRAM sample;
. . .
BEGIN

END.

- 95 -

RANGECHK

A common error which occurs in programs which utilize arrays
is to index the array with a value which is outside the array
bounds (eg. an array with bounds 1 •• 10 is indexed with the value
11). A common error in programs which utilize subranges is
to assign a value which is outside the subrange (eg. a variable
is declared as type 0 •• 255 and is assigned the value 275). A
common error in programs which utilize enumerations is to
increment or decrement past the first or last value of the
enumeration Ceg. SUCC(color) is executed when color is equal to
blue and color is of type (red, green, blue)).

All of these errors may be trapped, causing an appropriate
runtime error message to be displayed when such an error occurs
during program execution. The RANGECHK option tells the
compiler to generate extra code to detect and report errors of
the above type when the compiled program is executed.

Since the RANGECHK option does cause additional object code
to be generated, you should generally use it only during the
debugging stage of program development. The RANGECHK option may
be turned on and off throughout a program. The default is off.
The IF compiler option may be used to conditionally turn the
RANGECHK option on and off as needed for debugging purposes.
Example use of the compiler RANGECHK option:

PROGRAM sample;
VAR A,B: ARRAY[l •• 200] OF CHAR;

J,K: INTEGER;

BEGIN
WRITECOUTPUT,'Enter size of array: ');
(*$RANGECHK*) {turn range checking on}

FORK:= 1 TO J DO A[K] := B[K+l];
(*$NO RANGECHK*) {turn range checking off}

END.

Note: The RANGECHK option will not detect an error on
subrange variables which are assigned invalid values
via a read statement. To trap these errors, you
must assign the read in value to a subrange variable.

READ(VALUE);
SUBRANGE VARIABLE:= VALUE;

- 96 -

PTRCHECK

A common error which occurs in programs which utilize
dynamic pointer variables is the inadvertent assignment of
the value NIL to a pointer and then the subsequent attempt
to use the value pointed to in an expression or in an
assignment to a static variable. Another common error is the
attempt to utilize an uninitialized pointer. An uninitialized
pointer may not point to a location within the allocated heap
of the program. It may point into the executing code of
the program, making it possible to write data over the
instructions, causing very unpredictable results.

The PTRCHECK option is used to tell the compiler to generate
extra code in the compiled program to detect and report either
of the above types of errors when t~e program executes. This
extra code causes the program to terminate and display an
appropriate error message when an invalid use of a pointer
variable is detected. The PTRCHECK option may be turned on and
off throughout a program. The default is off.

Example use of the compiler PTRCHECK option:

PROGRAM sample;
TYPE customer= RECORD name,add: ARRAY[l •• 9] OF CHAR END;
VAR cust : Acustomer;
BEGIN

(*$PTRCHECK*)
. . .
WHILE cust<>NIL DO

END.

- 97 -

B. ERROR MESSAGES

B.l Compiler Error Codes

2 IDENTIFIER EXPECTED
3 'PROGRAM' EXPECTED
4 ')' EXPECTED
5 ':' EXPECTED
6 ILLEGAL SYMBOL
8 'QF' EXPECTED
9 '(' EXPECTED

10 ERROR IN TYPE
11 LEFT BRACKET'[' OR'(.' EXPECTED
12 RIGHT BRACKET']' OR'.)' EXPECTED
13 'END' EXPECTED
14 ';' EXPECTED
15 INTEGER EXPECTED
16 '=' EXPECTED
17 'BEGIN' EXPECTED
20 ',' EXPECTED
22 '••' EXPECTED
23 '•' EXPECTED
49 'ARRAY' EXPECTED
50 CONSTANT EXPECTED
51 ':=' EXPECTED
52 'THEN' EXPECTED
53 'UNTIL' EXPECTED
54 'DO' EXPECTED
55 'TO'/'OOWNTO' EXPECTED
57 'FILE' EXPECTED
58 INVALID OR MISSING OPERAND IN AN EXPRESSION
62 DECIMAL PLACE ALLOWED ONLY FOR REAL
66 TYPE IDENTIFIER EXPECTED
80 OPEN COMMENT WITHIN A COMMENT
81 UNKNOWN OPTION
82 # REQUIRES A 2 CHARACTER HEX VALUE OR #I

101 IDENTIFIER DECLARED TWICE
102 LOWER BOUND EXCEEDS UPPER BOUND
103 IDENTIFIER IS NOT OF APPROPRIATE CLASS
104 UNDECLARED IDENTIFIER
105 CLASS OF IDENTIFER IS NOT VARIABLE
107 INCOMPATIBLE SUBRANGE TYPES
113 ARRAY BOUNDS MUST BE SCALAR
117 UNSATISFIED FORWARD REFERENCE TO A TYPE IDENTIFER OF A POINTER
119 ';' EXPECTED (PARAMETER LIST NOT ALLOWED)
120 FUNCTION RESULT MUST BE SCALAR, SUBRANGE, OR POINTER
123 FUNCTION RESULT EXPECTED
126 IMPROPER NUMBER OF PARAMETERS
127 TYPE OF ACTUAL PARAMETER DOES NOT MATCH FORMAL PARAMETER
129 TYPE CONFLICT OF OPERANDS IN AN EXPRESSION
132 COMPARISON WITH'>' OR'<' NOT ALLOWED ON SETS
134 ILLEGAL TYPE OF OPERANDS)
135 TYPE OF EXPRESSION MUST BE BOOLEAN

- 98 -

136 SET ELEMENT TYPE MUST BE SOME ENUMERATION TYPE
138 TYPE OF VARIABLE IS NOT ARRAY
140 TYPE OF VARIABLE IS NOT RECORD
141 TYPE OF VARIABLE IS NOT POINTER
148 SET BOUNDS OUT OF RANGE
152 NO SUCH FIELD IN THIS RECORD
154 ACTUAL PARAMETER MUST BE A VARIABLE
156 MULTIDEFINED CASE LABEL
161 PROCEDURE OR FUNCTION ALREADY DECLARED AT A PREVIOUS LEVEL
165 LABEL ALREADY DEFINED
167 UNDECLARED LABEL
168 LABEL NOT DEFINED
182 "FOR" EXPRESSION MUST BE OF SOME ENUMERATION TYPE
183 "CASE" EXPRESSION MUST BE OF SOME ENUMERATION TYPE
184 "FOR" VARIABLE MUST BE LOCAL
185 OPERATION DEFINED FOR TEXT ONLY
186 OPERATION NOT DEFINED FOR TEXT FILES
193 ACCESS STATEMENT MISSING FOR COMMON
199 FEATURE NOT IMPLEMENTED
202 STRING CONSTANT CANNOT SPAN LINES
203 INTEGER CONSTANT TOO LARGE
210 FIELD WIDTH MUST BE INTEGER
211 FRACTION LENGTH MUST BE OF TYPE INTEGER
212 HEX FORMAT ALLOWED ONLY FOR.TYPE INTEGER
219 PARAMETER MUST BE OF TYPE FILE
220 PARAMETER MUST BE OF TYPE INTEGER
223 PARAMETER MUST BE OF TYPE POINTER
230 ILLEGAL TYPE OF PARAMETER IN STANDARD PROCEDURE CALL
250 TOO MANY NESTED SCOPES - LIMIT IS 15
401 OPEN COMMENT ENCOUNTERED IN A COMMENT
403 TO MANY PROCEDURE NESTING LEVELS
404 ARRAY BOUNDS MUST BE SCALAR

- 99 -

B.2 Runtime Error Codes

01) OUT OF
cause:
cure:

02) OUT OF
cause:
cure:

STACK
insufficient
If compiling
with PASCAL
with PASCALS:

amount of stack available

: switch to PASCALS
specify more stack space
PASCALS <stack> file

If executing
with RUN

with /CMD

: specify more stack space
RUN file stack

: specify more stack space when using B
command of LINKLOAD

HEAP
insufficient
If compiling
with PASCAL
with PASCALS:

amount of heap available

: switch to PASCALS
specify less stack space

If executing
with RUN
with /CMD

: specify less stack space
: specify less stack space when using B

command of LINKLOAD

03) BAD POINTER
cause: damaged object file or error in program which causes

executing code to be overwritten with data
cure: If executing one of the system /CMD files:

restore defective /CMD file from the original master
disk.

If executing a user written program:

04) BAD LEVEL
see error 03

05) DIVIDE BY 0

recompile the program using the RANGECHK and
PTRCHECK options and execute once again. Invalid
array indexing and most invalid pointer referencing
will be trapped. If a range or pointer error
message is di.splayed, locate and fix the programming
error.

cause: an integer or real divide operation with a divisor of O
cure: prevent divisor from becoming 0

06) UNDEFINED PCODE
see error 03

07) INVALID SET
cause: set operation results in set with more than 256 members
cure: restrict set operations to 256 member sets

08) BAD RUNTIME CALL
see error 03

- 100 -

)

09) IO ERROR
cause: 1 - file does not exist

2 - disk is full
3 - bad disk or hardware

cure: 1 - specify correct file name
2 - clear some space on the disk
3 - run diagnostics

0A) SET ELEMENT TOO LARGE
cause: attempt to assign an ordinal value> 256 to a set
cure: limit sets to 256 members

10) RANGE CHECK
cause: invalid array index, subrange value, or enumeration value
cure: correct invalid array indexing and/or invalid values

11) BAD DIGIT IN NUMBER
cause: attempt to read or DECODE an invalid number
cure: make sure all numbers read or decoded are legal numbers

12) PUT ERROR
cause: attempt to output an undefined file buffer variable
cure: assign a proper value to the file buffer variable

13) OVERFLOW
cause: a real arithmetic calculation overflows
cure: limit real numbers to the maximum size

15) UNDERFLOW
cause: a real divide operation causes underflow
cure: limit real numbers to the minimum non-zero size

16) LOG NEGATIVE
cause: attempt to take the natural log of a number<= 0
cure: log is valid positive numbers only

17) SQRT,XAY NEGATIVE
cause: attempt to take the square root of a negative number or

attempt to raise a negative number to a real power
cure: square root is valid only for number >=0

only positive numbers may be raised to a real power

EB) ATTEMPT TO WRITE TO INPUT FILE
cause: opening an output file using RESET
cure: open the output file using REWRITE

EC) FILE NOT OPEN
cause: attempt to read or write an unopened file
cure: open the file using RESET or REWRITE

ED) ATTEMPT TO READ OUTPUT FILE
cause: opening an input file using REWRITE
cure: open the input file using RESET

EE) NO MEMORY FOR FILE BUFFER
cause: not enough space for file buffer in heap
cure: execute program using less stack

- 101 -

J .

C. Standard 7-bit USASCII Character Set

Decimal Octal Hex Graphic Name

o. 000 00 ""@ NUL (used for padding) <null>
1. 001 01 ""A SOH (start of header)
2. 002 02 ""B STX (start of text)
3. 003 03 ""C ETX (end of text)
4. 004 04 D EOT (end of transmission)
5. 005 05 ""E ENQ (enquiry)
6. 006 06 ""F ACK (acknowledge)
7. 007 07 ""G BEL (bell or alarm)
8. 010 08 ""H BS (backspace) <bs>
9. 011 09 ""I HT (horizontal tab) <tab>

10. 012 0A ""J LF (line feed) <lf>
11. 013 OB ""K VT (vertical tab)
12. 014 oc ""L FF (form feed, new page) <ff>
13. 015 OD "M CR (carriage return) <er>
14. 016 OE ""N so (shift out)
15. 017 OF ""O SI (shift in)
16. 020 10 ""P OLE (data link escape)
17. 021 11 ""Q DCl (device control 1, XON)
18. 022 12 ""R DC2 (device control 2)
19. 023 13 ""S DC3 (device control 3, XOFF}
20. 024 14 ""T DC4 (device control 4)
21. 025 15 ""U NAK (negative acknowledge)
22. 026 16 Av SYN (synchronous idle)
23. 027 17 ""W ETB (end transmission block)
24. 030 18 Ax CAN (cancel)
25. 031 19 ""'Y EM (end of medium)
26. 032 lA ""Z SUB (substitute)
27. 033 lB [ESCAPE (alter mode, SEL) <esc>
28. 034 lC ""'\ FS (file separator)
29. 035 1D] GS (group separator)
30. 036 lE AA RS (record separator)
31. 037 lF us (unit separator) -32. 040 20 II II space or blank <sp>
33. 041 21 ! exclamation mark
34. 042 22 " double quote
35. 043 23 # number sign (hash mark)
36. 044 24 $ dollar sign
37. 045 25 % percent sign
38. 046 26 & ampersand sign
39. 047 27 single quote (apostrophe)
40. 050 28 (left parenthesis
41. 051 29) right parenthesis

- 102 -

42. 052 2A * asterisk (star)
43. 053 2B + plus sign
44. 054 2C , comma
45. 055 2D minus sign (dash) . 056 2E . period (decimal point)
47. 057 2F I (right) slash
48. 060 30 0 numeral zero
49. 061 31 1 numeral one
so. 062 32 2 numeral two
51. 063 33 3 numeral three
52. 064 34 4 numeral four
53. 065 35 5 numeral five
54. 066 36 6 numeral six
55. 067 37 7 numeral seven
56. 070 38 8 numeral eight
57. 071 39 9 numeral nine
58. 072 3A . colon .
59. 073 3B . semi-colon I

60. 074 3C < less-than sign
61. 075 3D = equal sign
62. 076 3E > greater-than sign
63. 077 3F ? question mark
64. 100 40 @ atsign
65. 101 41 A upper-case letter ABLE
66. 102 42 B upper-case letter BAKER
67. 103 43 C upper-case letter CHARLIE
68. 104 44 D upper-case letter DELTA
69. 105 45 E upper-case letter ECHO
70. 106 46 F upper-case letter FOXTROT
71. 107 47 G upper-case letter GOLF
72. 110 48 H upper-case letter HOTEL
73. 111 49 I upper-case letter INDIA
74. 112 4A J upper-case letter JERICHO
75. 113 4B K upper-case letter KAPPA
76. 114 4C L upper-case letter LIMA
77. 115 4D M upper-case letter MIKE
78. 116 4E N upper-case letter NOVEMBER
79. 117 4F 0 upper-case letter OSCAR
80. 120 50 p upper-case letter PAPPA
81. 121 51 Q ·upper-case letter QUEBEC
82. 122 52 R upper-case letter ROMEO
83. 123 53 s upper-case letter SIERRA
84. 124 54 T upper-case letter TANGO
85. 125 55 u upper-case letter UNICORN
86. 126 56 V upper-case letter VICTOR
87. 127 57 w upper-case letter WHISKY
88. 130 58 X upper-case letter XRAY
89. 131 59 y upper-case letter YANKEE
90. 132 SA z upper-case letter ZEBRA

- 103 -

91. 133 SB [left square bracket
92. 134 SC \ left slash (backslash)
93. 135 SD] right square bracket
9 4. 136 SE A uparrow (carat)
95. 137 SF underscore
96. 140 60 .. (single) back quote
97. 141 61 a lower-case letter able
98. 142 62 b lower-case letter baker
99. 143 63 C lower-case letter charlie

100. 144 64 d lower-case letter delta
101. 145 65 e lower-case letter echo
102. 146 66 f lower-case letter foxtrot
103. 147 67 g lower-case letter golf
104. 150 68 h lower-case letter hotel
105. 151 69 i lower-case letter india
106. 152 6A j lower-case letter jericho
107. 153 6B k lower-case letter kappa
108. 154 6C 1 lower-case letter lirna
109. 155 6D m lower-case letter mike
119. 156 6E n lower-case letter novernber
111. 157 6F 0 lower-case letter oscar
112. 160 70 p lower-case letter pappa
113. 161 71 q lower-case letter quebec
l.14. 162 72 r lower-case letter romeo
115. 163 73 s lower-case letter sierra
116. 164 74 t lower-case letter tango
117. 165 75 u lower-case letter unicorn
118. 166 76 V lower-case letter victor
119. 167 77 w lower-case letter whisky
120. 170 78 X lower-case letter xray
121. 171 79 y lower-case letter yankee)
122. 172 7A z lower-case letter zebra
123. 173 7B { left curly brace
124. 174 7C I vertical bar
125. 175 7D } right curly brace
126. 176 7E tilde
127. 177 7F <rubout> DEL

)

- 104 -

D. Differences from Standard

The standard used is defined by "User Manual and Report", second
edition, Jensen and Wirth, Springer-Verlag. The following sections
pertain to the differences in Alcor Systems implementation of Pascal
as compared to the standard. The extensions are added to provide
extra power to the language. All implementations of Pascal by Alcor
Systems contain these added features. If a program is to be
transported to a computer system using some other implementation of
Pascal, these features should not be used in the program.

D.1 Omissions

1) Procedures or functions may not be passed as parameters
to other procedures or functions.

D.2 Extensions

1) Common variables which provide a mechanism for statically
allocating local variables are implemented through the use
two new declaration parts: COMMON and ACCESS.

2) The declaration sections LABEL, CONST, TYPE, VAR, COMMON,
and ACCESS may appear any number of times and in any
order within a block.

3) The Type Transfer Operator allows variables to be referenced
through the use of a type template.

4) Single elements of packed structures may be passed as
parameters.

5) The OTHERWISE clause is implemented in the CASE statement.
If omitted, and there is no match, execution transfers to the
next statement.

6) Identifiers can include the characters' 'and'$'. Also, no
distinction is made between upper and lower case letters.

7) Integer constants or characters may be represented in hex.

- 105 -

8) Mixed mode arithmetic is implemented.

9) The procedures READ or READLN will accept string and boolean
variables.

10) External procedures or functions may be declared. This featur~~
provides a way of accessing external routines.

11) Input files are not opened until necessary. This eliminates
the synchronization problem when doing interactive input
from a terminal.

12) Labels may range from -32768 to 32767.

13) Alternate symbols are implemented for brackets and the
pointer symbol.

14) The LOCATION function allows the determination
of the address of a variable or a procedure.

15) The SIZE function allows the size of a type
to be determined.

16) The HB function returns the high byte of an integer variable.

17) The LB function returns the low byte of an integer variable.

18) The procedure MESSAGE provides an additional method for
handling string output to a terminal.

19) The procedure CLOSE allows files to be explicitly closed.

20) The procedure ESCAPE allows exiting a block at any point
within the block.

21) The type STRING is a predefined dynamic data type.
A string function library is provided for use with this
data type.

22) Libraries are provided to access the hardware features
of the specific machine.

23) Compiler options are provided to control various functions.

- 106 -

D.3 Other Implementation Characteristics

The following is a list of specific implementation decisions
which are not defined by the standard.

1) Only the first 8 characters of an identifier are stored.
This means that identifier names should be selected such
that the first 8 characters form a unique name.

2) There is a limit of 256 elements for sets, enumerations, CASE
statement labels, and parameters to a procedure or function.

3) Pascal source is restricted to 80 columns.

4) The association of logical files to physical devices is made
either interactively from the terminal or through a procedure
call.

The following is a list of characteristics which are slightly
altered from the standard.

1) Operator precedence has been altered to eliminate the need
for excessive use of parentheses in expressions. The
precedence is the same as that used in BASIC. The
difference is the precedence assigned to the Boolean operators.
The precedence defined by the standard makes the Boolean
operator OR equal in precedence with+ and-, the Boolean
operator AND equal in precedence with*,/, DIV, and MOD,
and NOT has the highest precedence of any operator except
the parentheses. Parentheses may be used when transportable
programs are being written to maintain compatability with
the standard. This alteration of precedence should not
cause any problems when transferring programs written in
standard Pascal to Alcor Pascal.

2) Although structured variables may contain components of type
FILE, the I/O routines will accept only simple variable names.
Therefore, use of files within structured variables may be
used only in a restricted manner.

3) A GOTO statement may not reference a label outside the
block in which the statement appears.

- 107 -

E. THE TYPE STRING

The standard Pascal string is defined to be a PACKED
ARRAY OF CHAR. Variables of this type are restricted to
a predetermined size. (ie. the size of the array
must be specified and cannot be altered during program
execution). The predefined type STRING is dynamic.
The size of a variable declared as type STRING is determined
during program execution. Variables of this type may change
in size as the program executes. In addition, variables of
type STRING may be used in conjunction with a runtime library
of string manipulation functions.

Syntax of type STRING:

--->STRING--->

Example:

VAR strl, str2, str3: STRING;

Assigning values to dynamic string variables

A dynamic string may be created through the use of the
predeclared transfer function BLDSTR. This function
has one parameter which may be either a variable of the
type PACKED ARRAY OF CHAR or a string constant. The
function returns a dynamic string of the same length as the
array or string constant passed to it.

Example:
strl := BLDSTR('literal string constant');

str2 := BLDSTR(stringconstant);

str3 := BLDSTR(arrayvariable);

- 108 -

)

)

The procedures READ and READLN have been extended to accept
variables of the type STRING. When a variable of type STRING
is specified, all characters from the current file pointer to
the end of line mark are read. The size of the string is then
equal to the number of characters read. If a read is performed
while at the end of line mark, the string variable is assigned
an empty string. An empty string is a string of zero length.

Example:
READ(strl);

READLN(filename,str2);

A string variable may be assigned to another string
variable. An assignment between two string variables
results in both string variables referencing the same string.
(ie. both string variables point to the same location in
memory)

Example:
strl := str2;

NOTE: For most applications, the preferred method of
assignment between two string variables is through
the use of the library function CPYSTRING. If two
string variables point to the same location and one
is disposed (using DISPOSE), then both string variables
will become undefined.

A string variable may be assigned a string formed by one
of the string manipulation functions in the runtime library.
For example, there is a function provided which may be used
for assignment between two string variables. The function
~PYSTR takes a string variable as a parameter and copys it
to another location. The string appearing on the left side
of the equal sign then references the new location. In other
words, instead of having one copy of the string as in the
above example, there are now two copies.

Example:
strl := CPYSTR(str2);

- 109 -

Outputing dynamic string variables

The WRITE and WRITELN procedures have been extended to
accept variables of the type STRING. When a dynamic
string is output, the number of characters written is
equal to the length of the string.

Converting a dynamic string into an array

Dynamic strings can only be accessed as a whole. (ie. the
indiviqual characters of the string cannot be accessed)
The predeclared procedure GETSTR will copy a dynamic
string variable into a variable of the type PACKED ARRAY
OF CHAR. It accepts two parameters. The first parameter
is the dynamic string variable. The second parameter is
the array variable. The string is left justified in the
array. If the string is longer than the array, then it is
truncated. If the string is shorter than the array, then the
array is padded with blanks.

Example:
GETSTR(strl, arrayvariable);

Recovering memory used by a dynamic string

The memory used by a dynamic string may be
recovered through the use of the standard procedure
DISPOSE. When a string variable is passed to the DISPOSE
procedure, the memory used by the string is freed and the
string variable becomes undefined. In addition, any other
string variable which points to the same string will become
undefined. Each time a string variable is assigned a value,
it points to a new string and the old string is then lost.
The memory it uses cannot be recovered. Therefore, before
assigning the string variable a new value, the memory used
by the old value should be recovered if space is important.

Example:
strl := BLDSTR('this is the first value');

DISPOSE(strl);
strl := BLDSTR('this is the second');

- 110 -

)

(
'

Using the string library

There is a long list of string manipulation functions
available in the runtime library. In order for a program
to have access to these functions, it must include an external
declaration for each function used. A file of external
declarations for all the string functions is supplied on
disk. The text editor may be used to insert this file into
the programs that use these functions. The declarations for
any functions which are not used may be deleted if desired.
If only one or two functions are used, you may prefer just to
type in the external declaration.
(See the System Implementation Manual for a description
of the string manipulation functions)

Example use of dynamic strings:

PROGRAM sample;

VAR firstname, lastname,
space, fullname : STRING;

FUNCTION CONC(sl,s2: STRING) : STRING; EXTERNAL;
(*CONC is a string library function which concatenates 2 strings*)

BEGIN
space:= BLDSTR(' ');
WRITELN(' enter first name');
READLN(firstname);
WRITELN(' enter last name');
READLN(lastname);
fullname := CONC(CONC(firstname,space),lastname);
WRITELN(fullname)

END.

- 111 -

F. I/0 PROCEDURES GET and PUT

File buffer variables and the procedures GET and PUT are
I/0 features of Pascal which are not often used. The procedures)
READ and WRITE are abbreviated forms for accomplishing the same -
I/0 tasks. However, file buffer variables do provide a means
of performing lookahead in a file. Cie. you may check the value
of the next component in a file before actually reading it)
The ability to perform lookahead may offer some advantages in
certain applications. (eg. the scanner of a compiler)

File Buffer Variables

There is a file buffer variable associated with each file
in a program. The buffer variable is used as temporary
storage for file components as they are passed to or from the
associated file. The buffer variable is the same size and type
as an individual component of the file. The individual
components of TEXT files are characters. Therefore, the file
buffer variable associated with a file of type TEXT has a size
of one byte (8 bits) and is of type CHAR. A file declared as
FILE OF INTEGER consists of individual components of type
INTEGER. The associated file buffer variable will have a size
of two bytes (ie. integers require two bytes of storage) and
be of type INTEGER.

The buffer variable associated with a particular file may
be referenced in the same manner as pointer variables, using
either the A or@ symbol. The buffer variable of a particular
file is referenced by following the logical file name with
either of these two symbols. For example, the buffer variable
of the logical file INPUT is referenced by either INPUT- or
INPUT@.

Files are opened for readihg or writing by the procedures
RESET or REWRITE respectively. When a file is opened by RESET,
the buffer variable associated with the file is assigned the
value of the first component in the file. If the file is
empty at the time it is opened, then the value of the buffer
variable is undefined. When a file is opened by REWRITE, its
associated buffer variable is undefined.

File buffer variables may be assigned values using the
assignment statement. For example, OUTPUT@:= 'A' will assign
the character A to the file buffer variable associated with
logical file OUTPUT. Additionally, the procedures READ, READLN,
and GET will alter values of file buffer varia~les associated
with input files. The buffer variables associated with output
files become undefined after performing the operation specified
by the WRITE, WRITELN, or PUT procedures.

- 112 -

)

The GET Procedure

The GET procedure assigns the value of the next component
of a file to the buffer variable associated with that file.
If there is no next component (ie. end of file), then EOF on
that file becomes TRUE and the value of the buffer variable
is undefined.

Syntax of GET: (default: file= INPUT)

I
V

----->GET---> (--->file--->)----->

Examples:

GET

GET(F)

{assigns the next character of the logical
file INPUT to the buffer variable INPUT@}

{assigns the next component of the logical
file F to the buffer variable F@ }

{ READ(f,x) is equivalent to x := f@; GET(f) }

The PUT Procedure

The PUT procedure appends the value of the buffer variable
for a particular file to the end of that file. After the
operation, the value of the buffer variable becomes undefined.

Syntax of PUT: (default: file= OUTPUT)

I
V

----->PUT---> (--->file--->)------>

Examples:

PUT {appends the value of the buffer variable
OUTPUT@ to the end of the logical file OUTPUT}

PUT(F) {appends the value of the buffer variable F@
to the end of the logical file F }

{ WRITE(f,x) is equivalent to f@:=x; PUT(f) }

- 113 -

Example use of GET and PUT and file buffer variables:

The following program copies the contents of logical file
"infile" to logical file "outfile".

PROGRAM filecopy;
VAR infile, outfile :
BEGIN

RESET(infile);
REWRITE(outfile);
WHILE NOT EOF(infile) DO

BEGIN

TEXT;

{infile@ = first character}
{outfile@ is undefined}

WHILE NOT EOLN(infile) DO
BEGIN

END.

outfile@ := infile@;
PUT(outfile);
GET(infile)
END;

READLN(inf ile);
WRITELN(outfile)
END

{define outfile@}
{write outfile@}
{get next character}

{advance to next line}
{advance to next line}

- 114 -

)

G. USING FILES IN STRUCTURED VARIABLES

This implementation of Pascal does not fully support
the use of files which are components of structured
variables. The following declarations are examples of
the use of files in structured variables:

VAR files : ARRAY [1 •• 5] OF TEXT;
student: RECORD

{array of files}

name : ARRAY[l •• 20] OF CHAR;
scores: FILE OF INTEGER; {file in record}
END;

The above declarations are legal but the I/O routines
{see chapter 10 of reference manual) will not accept file
names which are not simple. An example of a simple name
is "outfile". With the above declarations, the file names
are not simple names. I/O statements like the following
would generate compile errors:

READLN(files[2], •••
WRITELN(files[S], •••
READ(student.scores, •••
WHILE NOT EOF(student.scores) DO ••••

For applications that need to use files as components of
structures, there is a method of avoiding the simple name
restriction to file names. Simply write your own I/O
routines which act as interface to the Pascal I/O routines.
You may pass non-simple file names to these interface
routines which then use simple names in the actual I/O
operations. (see the example program on the following page)
It is important to note that the file variables should be
passed by reference.(preceded by VAR in the parameter list)

When using files which are components of structures, make
sure that the following two operations are always performed
on the files:

1) Before opening the file, the file must first be
initialized. The following operation will initialize
a file. The filename may be simple or non-simple when
performing this operation.

filename::INTEGER := 0 {initializes file "filename"}

2) Before exiting the program, the file must be explicitly
closed by the CLOSE procedure. Failure to do so will
probably result in loss of the file.

- 115 -

(*$NO INOUT*)
PROGRAM files_in_structures;

(* Sample program which uses array of files*)
(* This program prompts for a file name and

then sends the file to the line printer*)

VAR ch : CHAR;
files: ARRAY[l •• 2] OF TEXT;

PROCEDURE openr(VAR filename: TEXT);
BEGIN

filename::INTEGER:=0;
RESET(filename)

END;

{initialize file}
{open file for reading}

PROCEDURE openw(VAR filename: TEXT; name: STRING)J
PROCEDURE SETACNM(VAR f: TEXT; name: STRING); EXTERNAL;

BEGIN
filename::INTEGER:=0; {initialize file}
SETACNM(filename,name); {eliminate prompt for filename}
REWRITE(filename) {open file for writing}

END;

PROCEDURE closefile(VAR f: TEXT);
BEGIN

CLOSE(f) {close file}
END;

PROCEDURE readfile(VAR f : TEXT; VAR data: CHAR);
BEGIN

READ(f,data) {read from file}
END;

PROCEDURE writefile(VAR f : TEXT; data: CHAR);
BEGIN

WRITE(f,data) {write to file}
END;

- 116 -

(

PROCEDURE writeline(VAR f: TEXT);
BEGIN

WRITELN(f) {advance to next line of output file}
END;

PROCEDURE readline(VAR f: TEXT);
BEGIN

READLN(f) {advance to next line of input file}
END;

FUNCTION endfile(VAR f: TEXT) : BOOLEAN;
BEGIN

IF EOF(f) THEN endfile := TRUE else endfile := FALSE
END;

FUNCTION endline(VAR f: TEXT) : BOOLEAN;
BEGIN

IF EOLN(f) THEN endline := TRUE else endline := FALSE
END;

BEGIN
openr(files[l]);
{note to CP/M users--> :L should
openw(files[2],BLDSTR(':L'));
WHILE NOT endfile(files[l]) DO

BEGIN
WHILE NOT endline(files[l]) DO

BEGIN
readfile(files[l],ch);
writefile(files[2],ch);
END;

readline(files[l]);
writeline(files[2])
END;

closefile(files[l]);
closefile(files[2]);

END.

- 117 -

{open input file}
be changed to LST:}

{open output file}

H. USING GLOBAL VARIABLES IN EXTERNAL ROUTINES

It is recommended that whenever possible, variables should
be passed to routines rather than allowing the routines to
access global variables. However, sometimes the use of global
variables is necessary. When using global variables in an
external routine (ie compiled separately), it is necessary
to duplicate the exact global environment when the external
routine is compiled. Otherwise, referencing of global variables
within the external routine will not be correct.

The use of the compiler INCLUDE option is very helpful to
insure that the declarations used in the main program are
exactly duplicated in the separately compiled routine. The
following example illustrates the use of global variables in
a separately compiled procedure.

----- file containing the main program----­

PROGRAM main;
{the file GLOBAL contains the declarations for the main program}
{$INCLUDE 'GLOBAL'}
PROCEDURE separate; EXTERNAL;
BEGIN

letter:='a';
digit:=10;
separate;

END.

----- file containing the external procedure----­

PROGRAM compile separately;
{duplicate the global environment}
{$INCLUD& 'GLOBAL'}
PROCEDURE separate;
BEGIN

WRITELN('letter = ',letter);
WRITELN('digit = ',digit:2);

END;
BEGIN

{$NULLBODY}
END.

----- the file 'GLOBAL'-----

VAR CHAR; letter:
digit : INTEGER;

- 118 -

(

I. USING COMMON VARIABLES

Often when creating libraries, such as a set of graphics
routines, it is difficult to avoid the need for using global
variables. There is usually a routine which does some initial
processing to define variables which are needed by many of the
other routines in the library. If these variables are local to
the routine, they become undefined when the routine terminates.
Of course, these variables could be retained if they were included
as parameters to the routine. However, often these variables are
not pertinent to the functionality from an end users point of view.
Making them a part of the parameter list complicates the use of
the library routines. Another alternative is to make these variables
global. This is a problem too, because each programmer who uses
the library must know of these variables and make appropriate
declarations for them. Common variables offer a clean solution to
this type of programming problem. They essentially provide the
ability to use global variables in libraries without the need for
programs which use the library to even be aware of their existence.
The following example illustrates the use of common variables.

----- file containing library of routines-----

PROGRAM library;
COMMON xscale, yscale: REAL;

PROCEDURE axis(xmin,xmax,ymin,ymax: REAL);
ACCESS xscale, yscale;
BEGIN

xscale := 512/{xmax-xmin);
yscale := 256/(ymax-ymin);

END;

PROCEDURE scale(x,y: REAL);
ACCESS xscale, yscale;
VAR ix,iy: INTEGER;
BEGIN

ix:= ROUND(xscale*x);
iy := ROUND(yscale*y);
WRITE('original values: x,y = ',x:6:1,',',y:6:l);
WRITELN('scaled values: x,y = ',ix:3,',',iy:3);

END;

BEGIN
{$NULLBODY}

END.

user program

PROGRAM user;
VAR i : INTEGER;
PROCEDURE axis(xmin,xmax,ymin,ymax: REAL); EXTERNAL;
PROCEDURE scale(x,y: REAL); EXTERNAL;
BEGIN

axis(0.0,10.0,0.0,s.o);
FOR i := 0 TO 10 DO scale(i,i/2);

END.

- 119 -

~)
./

)

(

ADVANCED DEVELOPMENT PACKAGE

TABLE OF CONTENTS

Introduction. 1

Chapter 1

Using
A.
B.
c.

the Optimizer ••
When to use it.
How to use it.
Examples ••••••

Chapter 2

Using
A.
B.
c.

the Code Generator.
When to use it ••••••
How to use it ••••••
Examples •.•••••

Chapter 3

Mixed Mode Operation ••
A. When to use it.
B.
c.

How to use it.
Examples •••••••

Chapter 4

System Overview.
The P-code.
The Interpreter •.
Runtime Support.

A.
B.
c.
D.
E.
F.

Memory
How the
How the

Map •...••••••••
Optimizer Works ..
Code Generator Works.

Chapter 5

System Output •••..•••••••.••
A. Assembly Language

Language
Language

B.
c.
D.
E.

Assembly
Assembly

Structure.
Format.

Object Format •••••••••••
Splitting Object Files ••

2
2
2
4

5
5
6
7

• • • • • 9
9

..10
• ••••••• 10

.

•• 16
.16
.16

• ••••• 1 7
.17

• •• 18
.18

.•. 19

. •• 19
.19

• ••• 2 0
... 22
. •• 2 3

)

)

INTRODUCTION

The advanced development package (ADP) is a software tool
which adds a great deal of power and versatility to the TRS-80
Pascal System. The advanced development package consists of
two programs. One program is an optimizer which reduces the
size of programs. The other is a code generator which
increases the speed of programs. The combination gives the
programmer the ability to customize each application program,
allowing for maximum utilization of the systems capabilities.

The need for the optimizer occurs when writing large programs.
All programs require memory to store instructions and memory to
store data. Large programs require a lot of memory to store
instructions. The memory used for storing instructions
subtracts from the memory available for storing data (ie. the
more memory used for storing instructions, the less available
for storing data). The optimizer's purpose is to reduce the
amount of memory used by the instructions in order to make more
memory available for storing data.

The need for the code generator occurs when execution speed
is important. The compiler translates Pascal source
programs to instructions known asp-code. The computer
cannot directly execute instructions in p-code form.
Instead they are executed by another program known as an
interpreter. Maximum execution speed can be achieved by
translating programs to machine code (the form which the
computer hardware can understand and execute directly
without interpretation). The purpose of the code generator
is to translate p-code instructions to machine instructions.
This provides a method for achieving maximum execution
speed.

The addition of the ADP to TRS-80 Pascal provides the
programmer with a very flexible language system which offers a
unique ability. This is the ability to mix p-code with machine
code. P-code has the advantage of compactness while machine
code has the advantage of speed. The ability to mix the two
makes it possible to customize application programs in order to
achieve optimum performance. The bottle neck areas of a
program may be translated to machine code for maximum speed
while the rest of the program can be left in p-code form. This
allows programs to benefit from both compactness and speed.

- 1 -

USING THE P-CODE OPTIMIZER
--========================

The optimizer is a program which takes the compiler generated
p-code as input and outputs an optimized form of the same p-code.
Although optimized p-code will execute faster than non­
optimized p-code, the main purpose of the optimization is to
make the p-code more compact. The difference in size of the
optimized versus non-optimized p-code is dependent on the types
of language features utilized by the original source program.
Typically, the percent reduction in size due to optimization
will fall in the range of 10 to 30 percent. This size
reduction is sometimes very important. By making the program
smaller, there is more room for data. Often times, it will
enable the execution of a program that otherwise would run out
of memory.

A. When to Use the Optimizer

The optimizer should be used any time program size is an
important factor. A programs memory requirements are determined
by the number of executable instructions and by the number and
sizes of the variables used. The factor that the optimizer
addresses is the number and length of instructions. The
greatest benefit will then be realized when optimizing long
programs (>1000 lines). However, in many cases optimized code
is slightly faster than non-optimized code and even short
programs will sometimes benefit enough to make optimization
worth while. In addition, if a short program requires lots of
data storage, optimization will maximize the amount of memory
available for the data.

B. How to Use the Optimizer

Any p-code object file may be used as input to the optimizer
program. The compiler uses a /OBJ extension as a default
for p-code object files. Whole programs or separately compiled
parts of a program may be optimized. In either case, simply
compile the Pascal source and then run the compiler generated
p-code through the optimizer.

NOTE: Only p-code object files may be optimized. Do not
attempt to optimize command files (/CMD) or files
generated by the code generator (/COD)

- 2 -

)

Using the P-code Optimizer Chapter 1

The optimizer program is stored as a command file and
therefore may be executed simply by typing OPTIMIZE from the
top level of the operating system. Like the compiler, it has
two forms for input, a short form and a long form.

The short form:

OPTIMIZE filename

NOTE: Filename may include a drive specification.
Example: DATABASE:l
When a drive is specified the /OPT file is placed on
the same drive as the /OBJ file, otherwise the
operating system decides which drive to use.

The filename should not include an extension. The optimizer
appends the default extension /OBJ to the file name. The
output of the optimizer (the optimized p-code) is placed in a
file of the same name but with the extension /OPT. The /OPT
file may then be used just as any /OBJ file is used in
conjunction with the RUNP and LINKLOAD commands.

The long form:

OPTIMIZE
LISTING= listingfile/ext or device (:C,:L,or :D)
INP OBJ= inputfile/ext
OUT-OPT= outputfile/ext

NOTE: File names may also include drive specifiers.
Example: DATABASE/OPT:l

~ The long form requires that you enter the full file name,
including extension, for both the input file (non-optimized)
and output file (optimized). The LISTING will show the name
of each separate module in the input p-code file as it is
processed. After each name will appear its original size in
bytes followed by its optimized size in bytes. The LISTING
may be directed to a file or device. Typing a carriage return
will direct the listing to the CRT.

At completion, the optimizer program will display on the
listing the size of the non-optimized p-code used as input and
the optimized p-code generated as output.

ORIGINAL LENGTH= size in bytes
OPTIMIZED LENGTH= size in bytes

- 3 -

Using the P-code Optimizer Chapter 1

c. Example Use of the Optimizer

The following is an example of optimizing the DATABASE/PCL
program which was supplied with the TRS-80 Pascal System. The
example demonstrates use of the optimizer in both the short
and long forms.

step 1 ---> compile the database program

PASCAL DATABASE

step 2 ---> optimize the p-code in file DATABASE/OBJ

short form example:

OPTIMIZE DATABASE

long form example:

OPTIMIZE
LISTING= :L
INP OBJ= DATABASE/OBJ
OUT OPT= DATABASE/OPT

Both the short form and long form above would
produce the same result. The p-code in file
DATABASE/OBJ would be optimized and output to
the file DATABASE/OPT. The short form would direct
the listing to the CRT while the long form would
direct the listing to the line printer. The listing
output to the line printer would appear as below.

NOCUSTMR 15 13
PRESS 56 49
NEWSPACE 43 29
READDBAS 226 162
WRITEDBA 389 312
CUSTMROU 525 423
READTRAN 269 208
WRITETRA 415 325
DISPLAYD 114 84
LISTTRAN 130 91
LISTCUST 64 50
HEADING 70 64
MAINMENU 743 667
QUERYMEN 462 416
ADDCUSTM 193 153
QUERYTRA 213 161
ADDTRANS 349 266
SEARCHCU 284 218
QUERY 170 132
DATABASE 302 264

ORIGINAL LENGTH = 5437
OPTIMIZED LENGTH= 4418

- 4 -

)

USING THE CODE GENERATOR
========================

The code generator is a program which translates p-code
instructions to native machine instructions. Any compiler
generated p-code object file or optimized p-code file may be used
as input to the code generator program. Whole programs or
separately compiled parts of programs may be translated
(codegened) to machine code to increase execution speed.
The speed increase realized from code generation is dependent
on the nature of the program. Typically, codegened programs
will gain a factor of 3 to 5 times increase in speed over that
of pure p-code programs.

A. When to use the Code Generator

The code generator increases execution speed by translating
p-code instructions to machine instructions. Since each p-code
is equivalent to several machine instructions, code generation
also causes an increase in size. Therefore, the decision of
whether or not to perform code generation on a program must not
only be based on speed requirements, but also on program size.
Typically, code generation will cause the size of the object to
increase by a factor of 2 to 3 over that of pure p-code.

The execution speed of most programs will be adequate even
when left in p-code form. However, programs which do lots of
calculations within loops may benefit significantly through
code generation. Also, when a program contains one or more
procedures which are frequently called, code generation on
these sections of the program can provide quite an improvement
in execution speed. For example, the scanner of the compiler
is a procedure which reads the text of a pascal program and
distributes it to other parts of the compiler. Since it is
called frequently, much the of time spent during a compile is
inside this one procedure. Code generation of the scanner can
increase compile speed significantly. By selecting the parts
of a program which most effect speed and performing code
generation only on those parts, speed can.be increased without
significant increase in size.

The determination of whether or not to codegen a program can
be made by observation. First run the program in p-code form.
If execution speed is observed to be slow, the next step is to
determine whether or not to codegen the whole program or
selected parts of the program. As a general rule, small
programs should be totally codegened. The size increase for
small programs will probably be insignificant. However, for
large programs, the size increase may be very significant.

- 5 -

Using the Code Generator Chapter 2

For large programs (>1000 lines), a factor of 2 or 3 increase)
in object size will significantly reduce the amount of memory
left for the program data area (stack and heap). In cases
where the size increase would not allow enough room for data
area, selected procedures should be declared as externals and
compiled separately. The procedures selected should be the
ones which most effect execution speed. These procedures may
then be codegened and linked to the main program. This process
will allow for an increase in speed without causing the size to
increase to a level that prevents the program from being
executed.

The code generator performs most of the optimizations
performed by the optimizer. Therefore, it is not necessary to
optimize a program before performing code generation.

B. How to Use the Code Generator

Any compiler generated or optimized p-code file may be used as
input to the code generator. The compiler generates files with
the default extension of /OBJ. The optimizer generates files
with a default extension of /OPT. Whole programs or separately
compiled programs may be codegened. In either case, simply
compile the Pascal source and run the code generator program,
using the compiler generated object file as input. Of course,
optimized p-code files may also be used as input.

The code generator program is stored as a command file and
therefore may be executed simply by typing CODEGEN from the top
level of the operating system. Like the compiler and
optimizer, it has two forms, a short form and a long form.

The short form:

CODEGEN filename

NOTE: Filename may also include a drive specifier.
Example: BENCHMK:2
When a drive is specified, the /COD file is placed
on the same drive as the /OBJ file, otherwise the
operating system decides which drive to use.

The filename should not include an extension. The code
generator appends the default extension /OBJ to the file name.
The output of the code generator is placed in a file of the same
name but with the extension /COD. The /COD file may then be
used just as any /OBJ or /OPT object file in· conjunction with
the RUNP or LINKLOAD commands. However, do not attempt to
optimize a /COD file. The /COD files contain machine
instructions and the optimizer accepts only p-code instructions.

- 6 -

}

Using the Code Generator Chapter 2

The long form:

CODEGEN
INP OBJ= inputfile/ext
OUT-COD= outputfile/ext
DO YOU WANT ASSEMBLY LANGUAGE SOURCE? (Y,N): y or n

NOTE: File names may also include drive specifiers.
Example: BENCHMK/COD:2

The long form requires that you enter the full file name,
including extension, for both input and output files. If
assembly language output is desired, answer Y to the last
prompt, otherwise answer N. If assembly language output is
requested, the following prompt will appear.

SOURCE = file/ext

The additional assembly language output will be directed to the
file specified. The assembly language output is discussed
in chapter 5.

NOTE: The file CODEINIT/DAT must be on line when executing
CODEGEN. CODEGEN uses this file for initialization.

c. Example Use of the Code Generator

The following is an example of codegening a program.

step 1 ---> compile BENCHMK/PCL

PASCAL BENCHMK

step 2 ---> codegen the compiled program

short form example:

CODEGEN BENCHMK

The above example uses BENCHMK/OBJ as input and directs the
codegened output to file BENCHMK/COD.

- 7 -

Using the Code Generator

long form example 1:

CODEGEN
INP OBJ = BENCHMK/OBJ
OUT-COD = BENCHMK/COD

Chapter 2

DO YOU WANT ASSEMBLY LANGUAGE SOURCE? {Y,N): N

The above example does exactly the same thing as the short
form example.

long form example 2.

CODEGEN
INP OBJ= BENCHMK/OBJ
OUT-COD= BENCHMK/COD
DO YOU WANT ASSEMBLY LANGUAE SOURCE? {Y,N): Y
SOURCE= BENCHMK/SRC

The above example does the same thing as the previous
examples except that it also generates an assembly language
output which is directed to the file BENCHMK/SRC. The assembly
language output is explained in chapter 5.

- 8 -

)

MIXED MODE OPERATION
--

Through the use of the linking loader (the LINKLOAD command),
pure p-code object {/OBJ) files may be linked with codegened
(/COD) files. Executable programs (/CMD files) may then be
built which contain mixed instructions, both p-code and machine
code. This ability is important when writing large programs.
It allows you to select and codegen only those parts of a
program which most effect the speed of execution. The
remaining parts of the program can be left in p-code form. This
mixed mode operation allows you to increase execution speed
without dramatically increasing program size.

A. When to Use Mixed Mode

The use of mixed mode is usually not important until you
start developing large programs. Small programs can be totally
codegened without the size increase becoming a significant
factor. However, completely codegening large programs (>1000
lines) may cause a size increase which will prevent the program
from being executed. The code size of the program can become
so large that there is no longer enough room for data storage.
This of course depends on the data storage requirements of the
program.

When developing large programs, you should not consider code
generation until after executing the program in p-code form.
Observe the execution speed to determine whether or not it is
adequate for your application. If not, the next step is to
decide what areas of the program are most effecting the speed.
Long loops are typical areas of a program where most of the
execution time is spent. Another area might be a low level
procedure or several procedures which are called frequently
throughout a program. After deciding which areas of the
program are effecting execution speed the most, separate them
from the rest of the program and codegen them. The selection
and separation process is easiest if the program is well
modularized. That is, the program is already segmented into
modules, each performing a distinct and well defined function.

- 9 -

Mixed Mode Operation Chapter 3

B. How to Use Mixed Mode

Once the particular areas of a program have been selected for
codegening, they must be separated from the rest of the program.
Any selected modules (procedures and/or functions) should be
declared as externals. (See the Pascal Reference Manual)
The separated areas should then be compiled separately from the
remainder of the program. The compiler nullbody option is
required to compile procedures and/or functions which are
separated from the main program body. Once compiled, the
selected areas may be codegened and then linked to the
remainder of the program using the linking loader. Once
linked, a command file can be built using the BUILD command of
the linking loader.

NOTE: There is an alternative way of separating modules of a
program without separating them in the Pascal source.
The p-code object (/OBJ) file can be split.
(See chapter 5)

C. Example of Mixed Mode Operation

The process for mixed mode operation is summarized in the
following list of steps.

1) Select the areas which most effect program speed.
2) Separate the selected parts of the program from the

remainder of the program. Any selected procedures or
functions should be declared as EXTERNAL in the
main program. Place the separated modules in a
separate file or files. Use the nullbody compiler
option to put the separated modules in a form suitable
for the compiler.

3) Compile all parts of the program.
4) CODEGEN the parts of the program which were selected to

increase execution speed.
5) LINKLOAD all compiled parts of the program together and

build an executable command file.

The following example demonstrates this process. The program
used for this demonstration does not perform any useful
function, but merely demonstrates mixed mode operation. In
reality, a program of the size demonstrated should be totally
translated to machine instructions rather than using mixed
mode. The size increase due to code generation is .).
insignificant for such small programs.

- 10 -

(

Mixed Mode Operation

(*$NO INOUT*)
PROGRAM MIXED MODE;

Program listing

TYPE ALPHA-= ARRAY(.1 •• 8.) OF CHAR;
FILENM = ARRAY(.1 •• 72.) OF CHAR;
VAR FN : FILENM;
ID,T : ALPHA;
OUTPUT :TEXT;

PROCEDURE TIME(VAR T: ALPHA); EXTERNAL;

Chapter 3

PROCEDURE SET$ACNM(VAR F: TEXT;VAR FN: FILENM; LEN: INTEGER;
ID: ALPHA); EXTERNAL;

PROCEDURE LOOP;
(* MODULE TO BE CODEGENED *)
VAR CALCULATION,!: INTEGER;
BEGIN

FOR I:=l TO 10000 DO
BEGIN
CALCULATION:=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15
END

END; (* END LOOP*)
BEGIN (* MAIN PROGRAM*)

(* DIRECT OUTPUT TO THE SCREEN*)
FN(.l.):=':'; FN(.2.):='C';
ID:='OUTPUT ';
SET$ACNM(OUTPUT,FN,2,ID);
REWRITE(OUTPUT);
TIME(T);
WRITELN(OUTPUT,'STARTING TIME: , T);
LOOP;
TIME(T);
WRITELN(OUTPUT,'FINISHING TIME , T);

END. (* END PROGRAM*)

Step 1) Select the areas effecting execution speed the most.

Examining the above program, you can see that the procedure
named LOOP contains a very long FOR loop (1 to 10000)~ Inside
this loop is a long calculation. Any long loop containing a
significant number of statements or calculations will benefit
substantially from code generation. The procedure LOOP is
where the majority of program execution time is spent.
Therefore, it is a good choice for code generation.

Step 2) Separate the selected modules from the rest of the
program, declaring them as externals in the main
program and putting them into a form suitable for
compiling.

- 11 -

J.

Mixed Mode Operation Chapter 3

The following listing shows the procedure LOOP separated from
the main program. It is declared as an external procedure
within the main program and the compiler nullbody option is
used to turn the procedure into a valid Pascal program. The
main program and the procedure LOOP must be placed in separate
files. For example, the main program could be placed in a file
named MAIN/PCL and the procedure placed in a file named LOOP/PCL.

(*$NO INOUT*)
PROGRAM MIXED MODE;
TYPE ALPHA-= ARRAY(.1 •. 8.) OF CHAR;
FILENM = ARRAY(.1 •• 72.) OF CHAR;
VAR FN : FILENM;
ID,T : ALPHA;
OUTPUT :TEXT;

PROCEDURE TIME(VAR T: ALPHA); EXTERNAL;
PROCEDURE SET$ACNM(VAR F: TEXT;VAR FN: FILENM; LEN

ID: ALPHA); EXTERNAL;

PROCEDURE LOOP; EXTERNAL;

BEGIN (* MAIN PROGRAM*)
(* DIRECT OUTPUT TO THE SCREEN*)
FN (• 1.) : =' : ' ; FN (• 2.) : =' C' ;
ID:='OUTPUT ';
SET$ACNM(OUTPUT,FN,2,ID);
REWRITE(OUTPUT);
TIME(T);
WRITELN(OUTPUT,'STARTING TIME , T);
LOOP;
TIME(T);
WRITELN(OUTPUT,'FINISHING TIME , T);

END.

PROGRAM SEPARATE_COMPILATION;
PROCEDURE LOOP;
(* MODULE TO BE CODEGENED *)
VAR CALCULATION,I: INTEGER;
BEGIN

FOR I:=l TO 10000 DO
BEGIN
CALCULATION:=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15
END

END; (* END LOOP*)

BEGIN
(*$NULLBODY*}

END.

(* MAIN PROGRAM*)

- 12 -

INTEGER;

Mixed Mode Operation

Step 3) Compile all parts of the program.

TRSDOS Ready
PASCAL MAIN

Chapter 3

TRS80 PASCAL VER: 02.00.00 14000000 00:01:28 05/03/83

1 (*$NO INOUT*)
2 PROGRAM
3 TYPE
4
5 VAR
6
7

MIXED MODE;
ALPHA-= ARRAY(.1 •• 8.) OF CHAR;
FILENM = ARRAY(.1 •• 72.) OF CHAR;
FN : FILENM;
ID,T : ALPHA;
OUTPUT :TEXT;

8
9 PROCEDURE TIME(VAR T: ALPHA); EXTERNAL;

10
11
12

PROCEDURE SET$ACNM(VAR F: TEXT;VAR FN: FILENM; LEN:
ID: ALPHA); EXTERNAL;

13 PROCEDURE LOOP; EXTERNAL;
14
15 BEGIN (* MAIN PROGRAM*)
16 (* DIRECT OUTPUT TO THE SCREEN*)
1 7 FN C • 1.) : =' : 1

; FN (• 2.) : =' C' ;
18 ID:='OUTPUT ';
19 SET$ACNM(OUTPUT,FN,2,ID);
20 REWRITE(OUTPUT);
21 TIME(T);
22 WRITELN(OUTPUT,'STARTING TIME
23 LOOP;
24 TIME(T);

, T);

25 WRITELN(OUTPUT, 'FINISHING TIME: ', T);
26 END.

NO ERRORS DETECTED

TRSDOS Ready
PASCAL LOOP

TRS80 PASCAL VER: 02.00.00 14000000

1
2
3
4

PROGRAM SEPARATE_COMPILATION;
PROCEDURE LOOP;
(* MODULE TO BE CODEGENED *)
VAR CALCULATION,I : INTEGER;
BEGIN

FOR I:=1 TO 10000 DO

00:01:28 05/03/83

5
6
7
8
9

BEGIN
CALCULATION:=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15
END

10 END;
11 BEGIN

{* END LOOP*)

12 (*$NULLBODY*)
13 END.

NO ERRORS DETECTED

{* MAIN PROGRAM*)

- 13 -

PAGE 1

INTEGER;

PAGE 1

Mixed Mode Operation Chapter 3

Step 4) CODEGEN the parts selected to increase speed.

TRSDOS Ready
CODEGEN LOOP
LOOP

STACK USED= 15915 OF xxxxx HEAP USED= 882 OF xxxx

Step 5) LINKLOAD all compiled parts of the program and build
an executable command file.

The executable program will be placed in file MIXED/CMD.

TRSDOS Ready
LINKLOAD
L=LOAD, R=RUN, T=TRSDOS, I=INIT, S=SYMBOLS, B=BUILD CMD
>> L
FILE = MAIN/OBJ
MIXED MO
xxxxx-BYTES LEFT
>> L
FILE = LOOP/COD
LOOP
xxxxx BYTES LEFT
>> L
FILE = TRSLIB/OBJ
SETCSR
GOTOXY
GETKEY
INKEY
CLEARSCR
CLEARGRA
WRITECH
WRITESTR
INP
GET$PROC
IO$ERROR
HP$ERROR
TIME
DATE
ITIME
SETPOINT
RSETPOIN
TESTPOIN
USER
CALL$
$MEMORY
NOBLANK
READCURS
PEEK
POKE
INIT$FIL

- 14 -

Mixed Mode Operation

FILE$STA
SET$ACNM
xxxxx BYTES LEFT
>> B
STACK SIZE:
FILE = MIXED/CMD

The program may now be executed by typing MIXED.

TRSDOS Ready
MIXED
STARTING TIME: 00:02:48
FINISHING TIME: 00:02:51

Chapter 3

The execution time spent inside the LOOP procedure may be
calculated by subtracting the starting time from the finishing
time. With the LOOP procedure codegened, the execution time
is 3 seconds. The same program with the procedure LOOP not
codegened executes in 14 seconds, a factor of 4.7 difference
in execution speed. This may be tested by linking the file
LOOP/OBJ instead of the file LOOP/COD and running the
program over.

- 15 -

SYSTEM OVERVIEW

The TRS-80 Pascal Compiler is an 8500 line Pascal program
which has itself been compiled into a very compact p-code form.
The p-code form of the compiler has further been reduced in size
by the optimizer supplied with the ADP. The optimization was
necessary in order to make the compiler run in a 48k system.
The p-code form of the compiler was reduced in size by
approximately 28%, from 39k down to 28k.

For larger systems, where more memory is available, selected
parts of the compiler have been translated to machine
instructions by the code generator which is also supplied with
the ADP. The code generator translates p-code instructions to
native machine instructions for the purpose of increasing
execution speed. Since code generation also increases size,
only those sections which effected execution speed the most
were translated to machine instructions.

The ADP provides the tools that were essential in the
development of the compiler. These tools provide the same
capability in the development of application programs.

A. The Pcode

The p-code generated by the compiler was specifically designed
for the Pascal language. The p-code resembles an assembly language
for a stack machine. The p-code was designed to efficiently
implement Pascal functions. Therefore, each p-code instruction
performs a much more complex function than a machine
instruction. In fact, a p-code instruction is equivalent to an
assembly language subroutine. This is the reason that p-code is
so much more compact than native machine code.

B. The Interpreter

The interpreter is a highly optimized assembly language
program whose purpose is to interpret p-codes. Since the
computer hardware cannot understand p-code instructions, the
interpreter is necessary to execute programs which have been
compiled into p-code instructions. The interpreter can be
thought of as a processor whose instruction set is the set of
p-codes. The interpreter has the ability to switch between
p-code and machine code. A particular p-code instruction tells
the interpreter that native machine instructions follow. The
interpreter then points the program counter (PC) register to
the first of the native machine instructions and the hardware

- 16 -

System Overview Chapter 4

begins executing instructions. The ability of the interpreter
to switch between p-code and machine code allows programs to
contain mixed instructions. This means that parts of a program
may be codegened for speed while the remainder of the program
is left in p-code form for compactness.

C. The Runtime Support

The runtime support consists of the interpreter, a loader, a
routine to set up the Pascal stack and heap, and all the
input/output (I/0) routines. When building command files with
the linking loader, all the runtime support is included with
the program being built. Therefore, the total size of an
executable program is determined by adding the size of the
runtime to the size of the object program. The object program
may be p-code, native code, or a mixture of both. The size of
the object also includes any libraries which are linked, such·as
the string library.

D. The Memory Map

The following diagram shows the layout of memory useage by
the Pascal system. The runtime area is approximately 16K
bytes long. The memory remaining after subtracting off the
operating system, the runtime, and the program area is
allocated to stack and heap. This is the data area for the
program. The stack is used for storing the programs static
variables. The size of the stack is specified at the time
the program is run (using the RUNP command) or built (using
the LINKLOAD command). The remainder of memory is allocated to
the heap which is used for storing dynamic variables.

TRS-80
Hex 0000

Operating
System

3000 -----------
Runtime
Support - 7000 -----------

User
Program

Program
Stack

Program

Heap
FFFF

- 17 -

System Overview Chapter 4

E. How the Optimizer Works

The optimizer is a program which contains a loader for
loading p-code object files. The loader loads and operates
on one module (procedure and/or function) at a time,
maintaining context as it operates on each individual module.
The p-code instructions are analyzed to determine whether or not
they may be compressed into shorter instructions.

Since the compiler is one pass, it must generate some branch
and addressing instructions without knowing the actual
displacements. Thls makes it necessary to allocate two byte
operands for unknown displacements in order to handle all
cases. However, in many cases the displacements can be
specified using only one byte. The optimizer looks for such
cases and compresses the p-code instructions in order to take
advantage of the need for only a single byte operand.

The optimizer also looks for other types of situations where
compression of instructions is possible. For example, all
multiply by two instructions are converted to add instructions.
In certain cases, consecutive instructions can cancel one
another out (eg. an increment followed by a decrement). The
optimizer eliminates such cases. The optimizer also performs
constant folding (ie. it replaces arithmetic operations
involving only constant operands with a single constant value).
For example, 2+2 would be replaced by the single constant 4.

G. How the Code Generator Works

The code generator is a program which contains a loader for
loading p-code object files. The code generator loads one
module (procedure or function) at a time and translates the
p-code instructions to machine instructions. As noted earlier,
a p-code instruction is equivalent to several machine
instructions, so the translation process will increase the
total number of instructions in the object (/COD) file.

There are a few p-code instructions which perform very complex
functions. To perform equivalent functions in machine code
would require a very large number of instructions. Therefore,
a few selected p-code instructions are not translated to machine
instructions. They are left in p-code form and executed as
subroutine calls to assembly language routines within the
interpreter. Handling complex functions in this manner prevents
the /COD file from becoming as large as it would with complete ,, ..)
translation.

- 18 -

SYSTEM OUTPUT

A. Assembly Language

The native code generator has the capability of producing
assembly language source in addition to object code. It is
not necessary in normal circumstances to assemble the source,
since the object code emitted by CODEGEN is exactly equivalent
to the result of assembling the source. The assembly language
is provided as a means for the programmer to examine the code
produced by the native code generator. In some cases, the
programmer may wish to optimize this code by hand and assemble
it. It is expected that the need to do this will be rare,
since the effort is substantial and the improvements that can
be made are minor. If you wish to assemble the source output
of CODEGEN, then the Alcor Systems multiprocessor assembler
is required.

The source output of codegen is useful to the assembly language
programmer who wishes to link assembly language modules to Pascal
and to call them as Pascal procedures or functions. A possible
technique to accomplish this is to write a Pascal procedure or
function with the same name and calling sequence as the
assembly language routine. The actual code can be left out and
perhaps replaced by a template that merely accesses the
parameters that will be used in assembly language.

The dummy procedure produced above can be compiled by Pascal
and run through the code generator with the source option
enabled. Pascal and codegen will generate the proper Pascal
procedure or function linkage and will calculate the addresses
of variables and parameters referenced in the body of the

~ procedure. The generated code can then be used as a skeleton
for the assembly language that actually implements the
functions required.

B. Assembly Language Structure

The assembly language code emitted by CODEGEN is designed for
assembly by the Alcor Systems multiprocessor assembler. This
assembler provides the features required to support Pascal and
the ability to mix Z80 code (or 6502 code, or 1802 code, or 8080
code) with P-code. Essential assembler features include the
ability to switch among target processors (ZS0 to P-code), the
ability to define and reference external symbols (externals are
resolved at link edit or load time), and the ability to
generate p-code addressing modes (program counter relative,
stack displacement, access to common blocks).

- 19 -

System Output Chapter 5

Each Pascal procedure or function forms a separate module.
All symbols, labels, and instructions are local to the module
and reference other modules only via explicit external
references. Modules begin with a module identification. For
Pascal generated code, the module name is the name of the
procedure or function truncated to 8 characters. Each
procedure or function also contains an external definition of
the procedure name. This is signaled with the "DEF" assembler
directive. The DEF statement causes the name and its value to
be defined externally, so that other modules can call it.

Switching between modes (native vs. p-code) takes place within
the procedure. Some operations performed by Pascal are
sufficiently complex that they are implemented with
subroutines. Inclusion of the actual code in-line would make
the generated code unreasonably large. When these operatiohs
(such as input, output, or set operations) are performed, the
code generator produces a call to a runtime procedure. These
runtime procedures are already part of the Pcode interpreter.
Rather than reference them again (and require another copy),
the processor is switched back top-code mode and the
interpreter is allowed to perform the operation.

When in mixed mode, all procedure calling is performed using
the p-code interpreter. Since code for each module is separate,
and since modules may be split before being loaded, it is
unknown whether the procedure being called is p-code or native
code. Therefore, every module is entered in p-code mode. If
the module is native code, the processor is switched to native
mode immediately after entry to the procedure.

C. Assembly Language Format

The native code emitted by CODEGEN uses extended 8080
mnemonics. This is done primarily for historical reasons and
since the 8080 instruction set more clearly distinguishes
instructions by format. Use of 8080 extended mnemonics affects
only the source output of codegen, as the Z80 instruction set
is used and converted directly to object code by codegen. Each
instruction occupies one line. Labels are left justified and
begin with a letter. Each instruction has an op-code which is
either an 8080 instruction or a zao instruction. There are
also pseudo-operators (pseudo-ops) that provide instructions to
the assembler rather than generating code.

Operands use standard register names. In many cases, the
names of the Z80 index registers are merged with the op-code
(e.g. PUSHIX pushes the IX index register). This simplifies
interpretation by the assembler. Operands may also use
symbolic labels and constants. Constants are normally
expressed in hexadecimal (base 16) with a leading greater than
sign(">") to specify hexadecimal to the assembler.

- 20 -

)

System Output Chapter 5

Pseudo-operators

IDT
EQU

DEF
REF

CSEG
QLIST
END
ENTRY
SETCPU

identifies the module and gives it a name
defines the value of the label to the result of
evaluating the operand
defines the operand as an external symbol
specifies that the operand is an external symbol that
is defined in another module
Specifies the name and size of a common block
Selects the compact format for the assembler listing
Signals the end of the module
Defines an entry point into the module
Selects the processor whose assembly language is
being assembled

- 21 -

System Output Chapter 5

D. Object Format

TRS-80 Pascal uses its own format for object code. The main
reason for this is that support for many of the features of
TRS-80 Pascal are not present in existing object formats. For
example, TRS-80 Pascal supports common blocks for statically
allocated variable storage and the object format must in turn
allow for this.

The p-code generated by the compiler is address independent.
That is, it contains no absolute memory addresses and
can execute without change when loaded anywhere in memory.
All branching and calling of procedures within the pcode is
done relative to the current program counter. Since procedures
are compiled into separate modules, calculation of these
relative addresses must be done when the code is loaded. The
object format supports external references that are program
counter relative.

The object code is tagged hexadecimal and is emitted in a
line oriented stream that is compatible with a Pascal text
file. In particular, the object code is character oriented and
contains only printable ASCII characters. This allows the
object to be manipulated by text editors or transmitted over
modems. This is not possible with bit oriented formats.

Each item in the object file begins with a tag which is
usually an upper case letter. The tag defines the type of item
and the number and size of the fields to follow. Tags are
followed by one or more fields that specify the information to
be loaded. Three types of fields exist. Bytes are specified
with a two character hexadecimal number. Words consist of a
four character hexadecimal number with the most significant
byte first. Labels consist of eight character names that are
the names of external symbols, common blocks, etc •••

Following is a table which lists all the tags used in an
object file. All tags are followed by one to three fields of
information, each field being either a byte, word, or label.
The meaning of each tag is also shown.

- 22 -

)

)

(

System Output

Tag Fieldl

A
E
F
G
I
J
Q
M
N
0
p
K'
w
X
y . .

byte

word
word
label
word
word
word
word
word
word
word
word
word

Field2

label
label

word

word

Field3

label

E. Splitting Object Modules

Chapter 5

Meaning

Absolute(non-relocatable byte)
End of module
End of line
Definition of external symbol
External reference declaration
Module name
Reference to external symbol
Definition of common block
Reference to common
Overlay definition
Code (PC) origin
Relative reference to external
Relocatable word
Absolute word
Entry point definition
End of file

Since object files are in ASCII format, they may be edited
with a text editor or used as input to a Pascal program. The
following is a list of the pure pcode output (/OBJ) file for
the LOOP procedure in the mixed mode operation example.
Following it is a listing of the object (/COD) file which.
results from running the pcode object through the code
generator. As you can see, the code generation has caused
approximately a factor of 2 increase in size.

Pure Pcode Listing (/OBJ)

•

JLOOP P0000G0000LOOP A01X0000A38A02A03X0001Al5A04Al0A04A03X2710A07F
Al5A06A2BA4EX0000A03X0001A03X0002A22A03X0003A22A03X0004A22A03X0005A22A03F
X0006A22A03X0007A22A03X0008A22A03X0009A22A03X000AA22A03X000BA22A03X000CF
A22A03X000DA22A03X000EA22A03X000FA22Al5A02Al0A04A30X0004Al0A06A27A21AB9F
P0014X0047P005DA3AP0001X0006E . .

- 23 -

System Output Chapter 5

•

Native Code Listing (/COD)

JLOOP G0003LOOP AC1AEBAE9A01X0006A38A02A55A21X0001ADDA75A04ADDA74F
A05ADDA6EA04ADDA66A05AE5A21X2710AE5ADDA75A06ADDA74A07AC1AE1A78AACAEDA42F
A28A09A47A3F.AlFAA8A07AE6A01Al8A02A3EA00AA7AC2X0000A21X0001AESA21X0002AClF
A09AE5A21X0003AC1A09AE5A21X0004AC1A09AE5A21X0005AC1A09AE5A21X0006AC1A09F
AE5A21X0007AC1A09AE5A21X0008AC1A09AESA21X0009AC1A09AE5A21X000AAC1A09AESF
A21X000BAC1A09AESA21X000CAC1A09AE5A21X000DAC1A09AESA21XO00EAC1A09AE5A21F
X000FAC1A09ADDA75A02ADDA74A03ADDA6EA04ADDA66A05AE5ADDAESAE1A01X0004A09F
A4EA23A46A03A70A2BA71ADDA6EA06ADDA66A07AC1AAFAEDA42A20A01A3CAA7ACAW003AF
P0038W00BDP00BDACDW0000A3AE

Each module in an object file begins with the module name.
Therefore, it is possible to split a file containing several
modules into several files, each containing one module. This
is an alternate method of segmenting large programs where it is
desired to perform code generation on only selected parts.

There are two ways to split the object modules. One is to
text edit them. The other more desireable method is to write a
Pascal program to split them. A simple program may be written
to read the pcode (/OBJ) file. Each time a module is
encountered, open a file of the same name as the module and
write the module to that file. Once all the modules are
separated into different files, selected modules may be input
to the code generator and translated to native machine
instructions. The linking loader may then be used to link the
individual modules and build an executable command (/CMD) file.

- 24 -

MASTER CROSS REFERENCE INDEX

B = Beginners Guide E = Editor Manual R = Reference Manual
s = System Guide T = Tutorial A= Advanced Development Package

ABS R73, T36, T39
ACCESS R21
ADD T21
ADDRESS A22
AND R46
APPEND E 6, E36
ARCTAN R73
ARITHMETIC Al8, R44, T 4, Tl7, Tl9
ARRAY R28, T41
ASCII B 7, A22, El3,Rl02
ASSEMBLY Sl9, S20, S37, A 7, Al6, Al9
ASSIGNMENT R54, Tl7
AUTO-INDENT E24
BACKUP Bll, Bl2, E37, E40
BEGIN R23, R55, T 6, T21
BLDSTR Rl08
BLOCK Rl2, Rl3, Rl6, T37
BLOCK CMOS El7, E34
BOOLEAN R25, R52, T 9
BRANCHING R63, T28
BUILD Sll, Al0
BYTE Al8, A22
CALL$ S20
CASE R60, T24, T26
CHAR R25, T 9, Tll
CHARACTER S36
CHR R25, R74
CLEARGRAPHIC S27
CLEAR SCREEN S27
CLOSE R86
CLOS ERA ND S32
CMDLINE S19
CMPSTR S36
CODEGEN S 3, A 1, A 5, Al8
CODEINIT A 7
COMMAND MODE Bl0, Bll, E 8, El3, E24
COMMENT Rl0, T40
COMMON S10, Al9, A22, A23, R20,Rll9
COMPARE R45, T27

- 1 -

MASTER CROSS REFERENCE INDEX

COMPILE B13, S 5, S 6, s 7
COMPILER Al6
COMPONENT R35, T41, T46, T48
COMPOSE MODE E 7
COMPOUND RSS
CONC S36
CONDITIONAL R58, T30
CONST Rl8, Tll, Tl3
CONSTANTS A20, R 8, R 9, Rl8
cos R73
COUNTER R56, R89
CPYSTR S36
CURSOR B 8, B 9, El4, El5, E27, T 7
DATABASE S 8, T63
DATE Sl8
DECLARATION Rl6, T 9, Tll.
DECODED S35
DECODEI S35
DECODER S35
DEFINE MACRO E45, E47
DEFINED Sl0
DEFINITION A20, A23, Rl6
DELETE S36
DELETE 1rABS E24, E41
DELFILE S24
DELIMITERS Rl0
DEVICE NAMES B16, Sl3
DIMENSION R28, T42, T51
DISPOSE R42
DIV R44, Tl8, T21
DO R57
DOUBLE R88
DOWNTO R56, T24, T26
DYNAMIC Sl4, Al?, R40, R41, R42, T52
EDIT B 7, El2, E42
ELSE R58, T28, T31
ENCODED S35
ENCODE! S35

- 2 -

MASTER CROSS REFERENCE INDEX

ENCODER S35
END R23, RSS, T 6
ENUMERATED R26, T45, T48
ENUMERATION R25
EOB B 7, E 6, El3
EOF E 6, R73, R76, R77, Tl4
EOLN R34, R73, R76, R77, Tl4, T34
ERROR Bl4, Bl?, Bl8, Bl9, S12, S33, R98
ESCAPE R65, R75
EXIT Bll, Bl2, E37
EXP R73
EXPRESSION R49, T 4, Tl?, T22, T24
EXTENSIONS Rl0S
EXTERNAL S17, Al0, A20, A23, R69, R70
EXTMEM S29
FIELDS A22, R34
FILE R32, R33, R34, R76, T 7, Tll, Tl4
FILE$STATUS S23
FILE CMOS E36
FILE NAMES Bl6, Sl3
FIND S36
FOR R56, T23
FORDECL R89
FORWARD R68, T39
FUNCTION Sl7, S35, R22, R65, T32, T36
GET Rll2
GETKEY S23
GETSTR Rll0
GLOBAL R66, R69, R70, T34, T38
GOTO Rl 7, R63, T28
GOTOXY S27
HB R74
HEADING Rl3, RlS
HEAP Bl3, S 8, Sll, Sl5, S20, Al?, R41
HELP El8, E41
HEXADECIMAL S 8, Sll, A20, A22, R 9, R83
HP$ERROR S20
HSCROLL E28
IDENTIFIER R 7, T 7, T36, T38
IF R58, R90

- 3 -

"
-~

MASTER CROSS REFERENCE INDEX

)
IN R30, R46
INCLUDE R92
!NIT Sl2
INKEY S23
INOUT A12, R89
INP S22
INPUT A 3, A 5, R33, R76, Tl4, Tl6
INSERT S36
INSERT.MODE Bl0, El3, E24
INTEGER R 8, R24, Tl0
INTERPRETER A 1, Al6, Al7
INTERSECTION R32, R44
IO$ERROR S24
KEYS B 8, El3
KEYWORD R 9
LA;BEL A21, A23, Rl7, R53, R63
LB R74
LEFT$ S35
LEN S35
LIBRARY Sl7, S35, Al7, R65, R69, R91
LINE CMDS E31
LINE NUMBERS E25, S 8
LINKED R21, R65, R91, T54, T62
LINKLOAD S 4, S 9, Al0, Al7
LIST A 3, R93
LISTING Bl3, S 8
LITERAL R83
LN R61, R73
LOAD S 9, Sl0
LOADER Al0, Al8
LOCAL R66, R67, R71, T34, T38
LOCATION R74
LOGICAL R25, R32, R76
LOOP RSS, R56, R57
MAXINT Rl8
MEMBERSHIP R30, R46, T59
MEMORY Sl5, Sl6, A 2, A 6, Al6, Al7, A22, E 6
MESSAGE R72, R76, R87
MID$ S35
MIXED A 9, Al0, All, A20, A23, R44
MOD R44, R47, R51, R58, Tl8, T21

)

- 4 -

MASTER CROSS REFERENCE INDEX

NATIVE A 5, Al6
NESTED Rl2, R66
NEW R41, R42, T52, T54, T56
NIL R42, R59, TSS
NOBLANK S27
NOT R46, R52, T27
NULLBODY Al2, R70, R91
NUMBERS R 8
OBJECT s s, A 6, A22, A23, A24
ODD R73
OF R28, R37, R60
OPEN R77, R78
OPENRAND S31
OPERATOR A20, R44, Tl8
OPTIMIZER S 2, S 3, A 1, A 2, A 6, Al6, Al8
OPTIONS R88, T 1
OR R46, R52
ORD R22, R25, R74, T33
ORDINAL R24
OTHERWISE R60, R61
OUT S22
OUTPUT R33, R76, T 6, T 8, T14
OVERLAY A23
OVERVIEW S 2, Al6
OVERWRITE E13
PACK R28, R74
PACKED R28, R38
PAGE R87
PAGESIZE R94
PARAMETER T 4, T32, T34, T40
PARAMETERS E22, E27, Rl3, R14, Rl5, R50, R63
PARENTHESES R47
PASCAL S 3, s 5, s 6, Al6, T 2
PASCALB S 4
PCODE A 1, A 2, A 5, A 6, A. 9, Al6, Al8, Al9
PEEK S21
POINTER R40, R41, R42, R43, T52, T54, T56
POKE S21
PRECEDENCE R47, Tl?, Tl9, T22, T27

- 5 -

MASTER CROSS REFERENCE INDEX

PRECISION Sl6
PRED R75
PREDECLARED R72
PREDEFINED Rl8, R24, R25, R26, R33, R42, T 3, T 9, Tll, Tl6,

T26, T36, T44, T46, T59
PRINTER S 6
PROCEDURE Rl3, R22, R63, R65, T 3, T32, T34, T36
PROGRAM Rl2, Rl3, T 6
PTRCHECK R97
PUT Rll2
QUIT B11, E38
QUOTE E22, R 9
RANDOM S31, S32, S33
RANGECHK R96
READ R79, Tl4, T40, T42, T48, TSO
READCURSOR S28
READLN R34, R76, R84, Tl4, T42
READRAND S31
REAL Sl6, R 8, R27, T 3, T 9, Tll, T20, T26
RECORD R34, T 3, T 5, T46, T48
RECURSION R71
RECURSIVE R71, R90, T 5
REFERENCE A20, A23
REGISTER A20, Sl9, S20
RELATIONAL R45, R46, T 4, T27, T29, T59
RENAME S24
REPEAT R57, R58, T 4, T30
REPETITIVE R55
REPLACE S36
RESERVED R 9
RESET R72, R76, R77, R78, Tl4
REWRITE R72, R76, R78,.R79
RIGHT$ S35
ROLL E26
ROUND R74
RSETPOINT S28
RUN B15, S 5, S 7, S 8, Sll
RUNTIME Al7
SCOPE R66, R68, R69, T37, T39, T49
SELECTOR R38, T24, T26
SEMICOLON Rll

)

- 6 -

MASTER CROSS REFERENCE INDEX

SAVE E40
SCROLL El4, E27, E28
SEPARATE A 9, All, A22
SET R28, R29, R30, R31, R32, T 3, T 5, T59, T61
SETACNM S26
SETEDIT E 5, El0
SETPOINT S28
SETUP/EDT B 6, E 5, El0, Ell
SETUP FILE E 4, E48, E54
SET$ACNM S25
SHOWFILE E39
SHOWLINE E29
SIN R61, R73
SOUND Sl8
SOURCE A 8, Al0, A20
SPEED A 1, A 5, Al0, Al5, Al6
SPLIT OBJECT Al0, A24
SQR R23, R73
SQRT R73
STACK Bl3, S 6, S 7, S 8, Sl4, Al6,

Al7, R65, R71
STANDARD Rl05
s·rATEMENT R23, R53
STATE CMDS E24
STRING R 9, Rl08, T 7, Tll, Tl4, T41, T43
STRING CMDS E32
STRING LIB S35
STRUCTURE T 6, T32, T36
S'rRUCTURED Rl2, R28
STR$ S35
SUBRANGE R27
SUBROUTINES T 3, T32
SUBSET R27, R31, T59
SUBTRACT T21
succ R75, T44
SUPERSET R31, T59
SVC Sl8
SYMBOLS Sl0, A21, A23, Rl0
SYNTAX R 5
TAB El6, E27, E28
TABIFY E25
TAB SET E26, E41
TABLE A22
TAG A22, A23
TERMINAL B 6, E 5, El0
TESTPOINT S28
TEXT A22, R33, R34, R76, R79, R83, R84, R85, T 8, Tl3,

Tl5, T48, TSO
TEXT BUFFER B 7, E 6
THEN R58
TIME Sl8
TO R56

- 7 -

MASTER CROSS REFERENCE INDEX
}

/

TRANSLATE E43, E44
TRUNC R74, T26
TYPE Rl9, R24, R27, R28, R40, R48, T 3, T 9, Tll
UNARY Tl8
UNION R31, R44, T59
UNPACK R74
UNTIL R57, T30
USER Sl9
VAR R20, T 9
VARIANT R35, R37, R38, R39
WHILE R57, T21, T29, T31
WIDELIST R95
WITH R61, R62, T49
WORK FILE E 6, E 7
WRITE E 6, E40, R76, R81, T 6, Tl4
WRITECH S22
WRITELN R34, R76, R85, T 6, Tl3, Tl5
WRITERAND S32
WRITESTRING S22
$MEMORY S20

- 8 -

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM U. K.

91 KURRAJONG ROAD PARC INOUSTRIEL OE NANINNE BILSTON ROAD WEONESBURY
WEST MIDLANDS WS10 7JN MOUNT ORUITT, N.S.W. 2770 5140 NANINNE

10/83-TM Printed in U.S.A.

)

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf

